231 resultados para Cricoids cartilage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Arthroscopy is considered as "the gold standard" for the diagnosis of traumatic intraarticular knee lesions. However, recent developments in magnetic resonance imaging (MRI) now offer good opportunities for the indirect assessment of the integrity and structural changes of the knee articular cartilage. The study was to investigate whether cartilage-specific sequences on a 3-Tesla MRI provide accurate assessment for the detection of cartilage defects. METHODS A 3-Tesla (3-T) MRI combined with three-dimensional double-echo steady-state (3D-DESS) cartilage specific sequences was performed on 210 patients with knee pain prior to knee arthroscopy. Sensitivity, specificity, and positive and negative predictive values of magnetic resonance imaging were calculated and correlated to the arthroscopic findings of cartilaginous lesions. Lesions were classified using the modified Outerbridge classification. RESULTS For the 210 patients (1260 cartilage surfaces: patella, trochlea, medial femoral condyle, medial tibia, lateral femoral condyle, lateral tibia) evaluated, the sensitivities, specificities, positive predictive values, and negative predictive values of 3-T MRI were 83.3, 99.8, 84.4, and 99.8 %, respectively, for the detection of grade IV lesions; 74.1, 99.6, 85.2, and 99.3 %, respectively, for grade III lesions; 67.9, 99.2, 76.6, and 98.2 %, respectively, for grade II lesions; and 8.8, 99.5, 80, and 92 %, respectively, for grade I lesions. CONCLUSIONS For grade III and IV lesions, 3-T MRI combined with 3D-DESS cartilage-specific sequences represents an accurate diagnostic tool. For grade II lesions, the technique demonstrates moderate sensitivity, while for grade I lesions, the sensitivity is limited to provide reliable diagnosis compared to knee arthroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The articular cartilage layer of synovial joints is commonly lesioned by trauma or by a degenerative joint disease. Attempts to repair the damage frequently involve the performance of autologous chondrocyte implantation (ACI). Healthy cartilage must be first removed from the joint, and then, on a separate occasion, following the isolation of the chondrocytes and their expansion in vitro, implanted within the lesion. The disadvantages of this therapeutic approach include the destruction of healthy cartilage-which may predispose the joint to osteoarthritic degeneration-the necessarily restricted availability of healthy tissue, the limited proliferative capacity of the donor cells-which declines with age-and the need for two surgical interventions. We postulated that it should be possible to induce synovial stem cells, which are characterized by high, age-independent, proliferative and chondrogenic differentiation capacities, to lay down cartilage within the outer juxtasynovial space after the transcutaneous implantation of a carrier bearing BMP-2 in a slow-release system. The chondrocytes could be isolated on-site and immediately used for ACI. To test this hypothesis, Chinchilla rabbits were used as an experimental model. A collagenous patch bearing BMP-2 in a slow-delivery vehicle was sutured to the inner face of the synovial membrane. The neoformed tissue was excised 5, 8, 11 and 14 days postimplantation for histological and histomorphometric analyses. Neoformed tissue was observed within the outer juxtasynovial space already on the 5th postimplantation day. It contained connective and adipose tissues, and a central nugget of growing cartilage. Between days 5 and 14, the absolute volume of cartilage increased, attaining a value of 12 mm(3) at the latter juncture. Bone was deposited in measurable quantities from the 11th day onwards, but owing to resorption, the net volume did not exceed 1.5 mm(3) (14th day). The findings confirm our hypothesis. The quantity of neoformed cartilage that is deposited after only 1 week within the outer juxtasynovial space would yield sufficient cells for ACI. Since the BMP-2-bearing patches would be implanted transcutaneously in humans, only one surgical or arthroscopic intervention would be called for. Moreover, most importantly, sufficient numbers of cells could be generated in patients of all ages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hips with a cam deformity are at risk for early cartilage degeneration, mainly in the anterolateral region of the joint. T1ρ MRI is a described technique for assessment of proteoglycan content in hyaline cartilage and subsequently early cartilage damage. In this study, 1.5 Tesla T1ρ MRI was performed on 20 asymptomatic hips with a cam deformity and compared to 16 healthy control hips. Cam deformity was defined as an alpha angle at 1:30 o'clock position over 60° and/or at 3:00 o'clock position over 50.5°. Hip cartilage was segmented and divided into four regions of interest (ROIs): anterolateral, anteromedial, posterolateral and posteromedial quadrants. Mean T1ρ value of the entire weight bearing cartilage in hips with a cam deformity (34.0 ± 4.6 ms) was significantly higher compared to control hips (31.3 ± 3.2 ms, p = 0.050). This difference reached significance in the anterolateral (p = 0.042) and posteromedial quadrants (p = 0.041). No significant correlation between the alpha angle and T1ρ values was detected. The results indicate cartilage damage occurs in hips with a cam deformity before symptoms occur. A significant difference in T1ρ values was found in the anterolateral quadrant, the area of direct engagement of the deformity, and in the posteromedial quadrant. To conclude, T1ρ MRI can detect early chondral damage in asymptomatic hips with a cam deformity. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To determine the performance of a newly developed examination chair as compared with the clinical standard of assessing internal rotation (IR) of the flexed hip with a goniometer. METHODS: The examination chair allowed measurement of IR in a sitting position simultaneously in both hips, with hips and knees flexed 90 degrees, lower legs hanging unsupported and a standardized load of 5 kg applied to both ankles using a bilateral pulley system. Clinical assessment of IR was performed in supine position with hips and knees flexed 90 degrees using a goniometer. Within the framework of a population-based inception cohort study, we calculated inter-observer agreement in two samples of 84 and 64 consecutive, unselected young asymptomatic males using intra-class correlation coefficients (ICC) and determined the correlation between IR assessed with examination chair and clinical assessment. RESULTS: Inter-observer agreement was excellent for the examination chair (ICC right hip, 0.92, 95% confidence interval [CI] 0.89-0.95; ICC left hip, 0.90, 95% CI 0.86-0.94), and considerably higher than that seen with clinical assessment (ICC right hip, 0.65, 95% CI 0.49-0.77; ICC left hip, 0.69, 95% CI 0.54-0.80, P for difference in ICC between examination chair and clinical assessment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the use of hierarchical clustering of flow cytometry data to classify samples of conventional central chondrosarcoma, a malignant cartilage forming tumor of uncertain cellular origin, according to similarities with surface marker profiles of several known cell types. Human primary chondrosarcoma cells, articular chondrocytes, mesenchymal stem cells, fibroblasts, and a panel of tumor cell lines from chondrocytic or epithelial origin were clustered based on the expression profile of eleven surface markers. For clustering, eight hierarchical clustering algorithms, three distance metrics, as well as several approaches for data preprocessing, including multivariate outlier detection, logarithmic transformation, and z-score normalization, were systematically evaluated. By selecting clustering approaches shown to give reproducible results for cluster recovery of known cell types, primary conventional central chondrosacoma cells could be grouped in two main clusters with distinctive marker expression signatures: one group clustering together with mesenchymal stem cells (CD49b-high/CD10-low/CD221-high) and a second group clustering close to fibroblasts (CD49b-low/CD10-high/CD221-low). Hierarchical clustering also revealed substantial differences between primary conventional central chondrosarcoma cells and established chondrosarcoma cell lines, with the latter not only segregating apart from primary tumor cells and normal tissue cells, but clustering together with cell lines from epithelial lineage. Our study provides a foundation for the use of hierarchical clustering applied to flow cytometry data as a powerful tool to classify samples according to marker expression patterns, which could lead to uncover new cancer subtypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the interconnection between the processes of proliferation, dedifferentiation, and intrinsic redifferentiation (chondrogenic) capacities of human articular chondrocyte (HAC), and to identify markers linking HAC dedifferentiation status with their chondrogenic potential. Cumulative population doublings (PD) of HAC expanded in monolayer culture were determined, and a threshold range of 3.57-4.19 PD was identified as indicative of HAC loss of intrinsic chondrogenic capacity in pellets incubated without added chondrogenic factors. While several specific gene and surface markers defined early HAC dedifferentiation process, no clear correlation with the loss of intrinsic chondrogenic potential could be established. CD90 expression during HAC monolayer culture revealed two subpopulations, with sorted CD90-negative cells showing lower proliferative capacity and higher chondrogenic potential compared to CD90-positive cells. Although these data further validated PD as critical for in vitro chondrogenesis, due to the early shift in expression, CD90 could not be considered for predicting chondrogenic potential of HAC expanded for several weeks. In contrast, an excellent mathematically modeled correlation was established between PD and the decline of HAC expressing the intracellular marker S100, providing a direct link between the number of cell divisions and dedifferentiation/loss of intrinsic chondrogenic capacity. Based on the dynamics of S100-positive HAC during expansion, we propose asymmetric cell division as a potential mechanism of HAC dedifferentiation, and S100 as a marker to assess chondrogenicity of HAC during expansion, of potential value for cell-based cartilage repair treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An incongruity between instrument and articular surfaces in osteochondral transfer (OCT) results in unevenly distributed impact forces exerted on the cartilage which may cause a loss of functional chondrocytes. We tested whether a plane instead of a concave design of the punch of an osteotome can reduce these cartilage damages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to investigate whether T1-mapping of hip joint with intra-articular delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (ia-dGEMRIC) is comparable to the already established intravenous (iv)-technique for assessing different grades of cartilage degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surgical dislocation of the hip in the treatment of acetabular fractures allows the femoral head to be safely displaced from the acetabulum. This permits full intra-articular acetabular and femoral inspection for the evaluation and potential treatment of cartilage lesions of the labrum and femoral head, reduction of the fracture under direct vision and avoidance of intra-articular penetration with hardware. We report 60 patients with selected types of acetabular fracture who were treated using this approach. Six were lost to follow-up and the remaining 54 were available for clinical and radiological review at a mean follow-up of 4.4 years (2 to 9). Substantial damage to the intra-articular cartilage was found in the anteromedial portion of the femoral head and the posterosuperior aspect of the acetabulum. Labral lesions were predominantly seen in the posterior acetabular area. Anatomical reduction was achieved in 50 hips (93%) which was considerably higher than that seen in previous reports. There were no cases of avascular necrosis. Four patients subsequently required total hip replacement. Good or excellent results were achieved in 44 hips (81.5%). The cumulative eight-year survivorship was 89.0% (95% confidence interval 84.5 to 94.1). Significant predictors of poor outcome were involvement of the acetabular dome and lesions of the femoral cartilage greater than grade 2. The functional mid-term results were better than those of previous reports. Surgical dislocation of the hip allows accurate reduction and a predictable mid-term outcome in the management of these difficult injuries without the risk of the development of avascular necrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoarthritis of the hip joint is caused by a combination of intrinsic factors and extrinsic factors. Different surgical techniques are being performed to delay or halt osteoarthritis. Success of salvage procedures of the hip depends on the existing cartilage and joint damage before surgery; the likelihood of therapy failure rises with advanced osteoarthritis. For imaging of intra-articular hip pathology, MR imaging represents the best technique because of its ability to directly visualize cartilage, superior soft tissue contrast, and the prospect of multidimensional imaging. This article gives an overview on the standard MR imaging techniques used for diagnosis of hip osteoarthritis and their implications for surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pes cavovarus affects the ankle biomechanics and may lead to ankle arthrosis. Quantitative T2 STAR (T2*) magnetic resonance (MR) mapping allows high resolution of thin cartilage layers and quantitative grading of cartilage degeneration. Detection of ankle arthrosis using T2* mapping in cavovarus feet was evaluated. Eleven cavovarus patients with symptomatic ankle arthrosis (13 feet, mean age 55.6 years, group 1), 10 cavovarus patients with no or asymptomatic, mild ankle arthrosis (12 feet, mean age 41.8 years, group 2), and 11 controls without foot deformity (18 feet, mean age 29.8 years, group 3) had quantitative T2* MR mapping. Additional assessment included plain radiographs and the American Orthopaedic Foot and Ankle Society (AOFAS) score (groups 1 and 2 only). Mean global T2* relaxation time was significantly different between groups 1 and 2 (p = 0.001) and groups 1 and 3 (p = 0.017), but there was no significance for decreased global T2* values in group 2 compared to group 3 (p = 0.345). Compared to the medial compartment T2* values of the lateral compartment were significantly (p = 0.025) higher within group 1. T2* values in the medial ankle joint compartment of group 2 were significantly lower than those of group 1 (p = 0.019). Ankle arthrosis on plain radiographs and the AOFAS score correlated significantly with T2* values in the medial compartment of group 1 (p = 0.04 and 0.039, respectively). Biochemical, quantitative T2* MR mapping is likely effective to evaluate ankle arthrosis in cavovarus feet but further studies are required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the feasibility of sodium 7-T magnetic resonance (MR) imaging in repaired tissue and native cartilage of patients after matrix-associated autologous chondrocyte transplantation (MACT) and compare results with delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) at 3 T.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the use of diffusion-weighted imaging (DWI) for the assessment of cartilage maturation in patients after matrix-associated autologous chondrocyte transplantation (MACT).