161 resultados para Computer terminals
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
OBJECTIVES Optical scanners combined with computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide high accuracy in the fabrication of titanium (TIT) and zirconium dioxide (ZrO) bars. The aim of this study was to compare the precision of fit of CAD/CAM TIT bars produced with a photogrammetric and a laser scanner. METHODS Twenty rigid CAD/CAM bars were fabricated on one single edentulous master cast with 6 implants in the positions of the second premolars, canines and central incisors. A photogrammetric scanner (P) provided digitized data for TIT-P (n=5) while a laser scanner (L) was used for TIT-L (n=5). The control groups consisted of soldered gold bars (gold, n=5) and ZrO-P with similar bar design. Median vertical distance between implant and bar platforms from non-tightened implants (one-screw test) was calculated from mesial, buccal and distal scanning electron microscope measurements. RESULTS Vertical microgaps were not significantly different between TIT-P (median 16μm; 95% CI 10-27μm) and TIT-L (25μm; 13-32μm). Gold (49μm; 12-69μm) had higher values than TIT-P (p=0.001) and TIT-L (p=0.008), while ZrO-P (35μm; 17-55μm) exhibited higher values than TIT-P (p=0.023). Misfit values increased in all groups from implant position 23 (3 units) to 15 (10 units), while in gold and TIT-P values decreased from implant 11 toward the most distal implant 15. SIGNIFICANCE CAD/CAM titanium bars showed high precision of fit using photogrammetric and laser scanners. In comparison, the misfit of ZrO bars (CAM/CAM, photogrammetric scanner) and soldered gold bars was statistically higher but values were clinically acceptable.
Resumo:
This article addresses the issue of kriging-based optimization of stochastic simulators. Many of these simulators depend on factors that tune the level of precision of the response, the gain in accuracy being at a price of computational time. The contribution of this work is two-fold: first, we propose a quantile-based criterion for the sequential design of experiments, in the fashion of the classical expected improvement criterion, which allows an elegant treatment of heterogeneous response precisions. Second, we present a procedure for the allocation of the computational time given to each measurement, allowing a better distribution of the computational effort and increased efficiency. Finally, the optimization method is applied to an original application in nuclear criticality safety. This article has supplementary material available online. The proposed criterion is available in the R package DiceOptim.
Resumo:
It is often claimed that scientists can obtain new knowledge about nature by running computer simulations. How is this possible? I answer this question by arguing that computer simulations are arguments. This view parallels Norton’s argument view about thought experiments. I show that computer simulations can be reconstructed as arguments that fully capture the epistemic power of the simulations. Assuming the extended mind hypothesis, I furthermore argue that running the computer simulation is to execute the reconstructing argument. I discuss some objections and reject the view that computer simulations produce knowledge because they are experiments. I conclude by comparing thought experiments and computer simulations, assuming that both are arguments.
Resumo:
OBJECTIVE To compare the precision of fit of full-arch implant-supported screw-retained computer-aided designed and computer-aided manufactured (CAD/CAM) titanium-fixed dental prostheses (FDP) before and after veneering. The null-hypothesis was that there is no difference in vertical microgap values between pure titanium frameworks and FDPs after porcelain firing. MATERIALS AND METHODS Five CAD/CAM titanium grade IV frameworks for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI tooth positions 15, 13, 11, 21, 23, 25) were fabricated after digitizing the implant platforms and the cuspid-supporting framework resin pattern with a laser scanner (CARES(®) Scan CS2; Institut Straumann AG, Basel, Switzerland). A bonder, an opaquer, three layers of porcelain, and one layer of glaze were applied (Vita Titankeramik) and fired according to the manufacturer's preheating and fire cycle instructions at 400-800°C. The one-screw test (implant 25 screw-retained) was applied before and after veneering of the FDPs to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from interproximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS All vertical microgaps were clinically acceptable with values <90 μm. No statistically significant pairwise difference (P = 0.98) was observed between the relative effects of vertical microgap of unveneered (median 19 μm; 95% CI 13-35 μm) and veneered FDPs (20 μm; 13-31 μm), providing support for the null-hypothesis. Analysis within the groups showed significantly different values between the five implants of the FDPs before (P = 0.044) and after veneering (P = 0.020), while a monotonous trend of increasing values from implant 23 (closest position to screw-retained implant 25) to 15 (most distant implant) could not be observed (P = 0.169, P = 0.270). CONCLUSIONS Full-arch CAD/CAM titanium screw-retained frameworks have a high accuracy. Porcelain firing procedure had no impact on the precision of fit of the final FDPs. All implant microgap measurements of each FDP showed clinically acceptable vertical misfit values before and after veneering. Thus, the results do not only show accurate performance of the milling and firing but show also a reproducible scanning and designing process.
Resumo:
BACKGROUND Driving a car is a complex instrumental activity of daily living and driving performance is very sensitive to cognitive impairment. The assessment of driving-relevant cognition in older drivers is challenging and requires reliable and valid tests with good sensitivity and specificity to predict safe driving. Driving simulators can be used to test fitness to drive. Several studies have found strong correlation between driving simulator performance and on-the-road driving. However, access to driving simulators is restricted to specialists and simulators are too expensive, large, and complex to allow easy access to older drivers or physicians advising them. An easily accessible, Web-based, cognitive screening test could offer a solution to this problem. The World Wide Web allows easy dissemination of the test software and implementation of the scoring algorithm on a central server, allowing generation of a dynamically growing database with normative values and ensures that all users have access to the same up-to-date normative values. OBJECTIVE In this pilot study, we present the novel Web-based Bern Cognitive Screening Test (wBCST) and investigate whether it can predict poor simulated driving performance in healthy and cognitive-impaired participants. METHODS The wBCST performance and simulated driving performance have been analyzed in 26 healthy younger and 44 healthy older participants as well as in 10 older participants with cognitive impairment. Correlations between the two tests were calculated. Also, simulated driving performance was used to group the participants into good performers (n=70) and poor performers (n=10). A receiver-operating characteristic analysis was calculated to determine sensitivity and specificity of the wBCST in predicting simulated driving performance. RESULTS The mean wBCST score of the participants with poor simulated driving performance was reduced by 52%, compared to participants with good simulated driving performance (P<.001). The area under the receiver-operating characteristic curve was 0.80 with a 95% confidence interval 0.68-0.92. CONCLUSIONS When selecting a 75% test score as the cutoff, the novel test has 83% sensitivity, 70% specificity, and 81% efficiency, which are good values for a screening test. Overall, in this pilot study, the novel Web-based computer test appears to be a promising tool for supporting clinicians in fitness-to-drive assessments of older drivers. The Web-based distribution and scoring on a central computer will facilitate further evaluation of the novel test setup. We expect that in the near future, Web-based computer tests will become a valid and reliable tool for clinicians, for example, when assessing fitness to drive in older drivers.
Resumo:
Das Projekt Literalität in Alltag und Beruf (LAB) entwickelt und erprobt spezifische Methoden der Weiterbildung. Es richtet sich an Erwachsene mit Schwierigkeiten im Umgang mit den Basiskompetenzen Schriftgebrauch und Alltagsmathematik. Generelles Ziel des Programms ist, die Arbeitsmarktfähigkeit von Bildungsbenachteiligten zu erreichen, wo möglich zu erhalten und zu steigern. Weiter soll den Teilnehmenden durch die Stärkung von literalen Grundkompetenzen der Zugang zu bestehenden Weiterbildungsangeboten in ihrem beruflichen Umfeld ermöglicht oder erleichtert werden.
Resumo:
Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT) measurements to those obtained by loading pressure examination and to establish representative region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predicting bone failure force. DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually controlled universal bone crusher to measure bone failure force and reevaluated for the site of fractures on follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min until failure, defined as the first clear drop in the load measurement. The lowest BMD was measured at the trabecular region (mean +/- SD: 1.52 +/- 0.12 g/cm2; median: 1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabelcular BMD and the breaking strength (P = 0.023, r = 0.62). The trabecular region of the proximal phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk model.
Resumo:
The human face is a vital component of our identity and many people undergo medical aesthetics procedures in order to achieve an ideal or desired look. However, communication between physician and patient is fundamental to understand the patient’s wishes and to achieve the desired results. To date, most plastic surgeons rely on either “free hand” 2D drawings on picture printouts or computerized picture morphing. Alternatively, hardware dependent solutions allow facial shapes to be created and planned in 3D, but they are usually expensive or complex to handle. To offer a simple and hardware independent solution, we propose a web-based application that uses 3 standard 2D pictures to create a 3D representation of the patient’s face on which facial aesthetic procedures such as filling, skin clearing or rejuvenation, and rhinoplasty are planned in 3D. The proposed application couples a set of well-established methods together in a novel manner to optimize 3D reconstructions for clinical use. Face reconstructions performed with the application were evaluated by two plastic surgeons and also compared to ground truth data. Results showed the application can provide accurate 3D face representations to be used in clinics (within an average of 2 mm error) in less than 5 min.
Resumo:
Objective In order to benefit from the obvious advantages of minimally invasive liver surgery there is a need to develop high precision tools for intraoperative anatomical orientation, navigation and safety control. In a pilot study we adapted a newly developed system for computer-assisted liver surgery (CALS) in terms of accuracy and technical feasibility to the specific requirements of laparoscopy. Here, we present practical aspects related to laparoscopic computer assisted liver surgery (LCALS). Methods Our video relates to a patient presenting with 3 colorectal liver metastases in Seg. II, III and IVa who was selected in an appropriate oncological setting for LCALS using the CAScination system combined with 3D MEVIS reconstruction. After minimal laparoscopic mobilization of the liver, a 4- landmark registration method was applied to enable navigation. Placement of microwave needles was performed using the targeting module of the navigation system and correct needle positioning was confirmed by intraoperative sonography. Ablation of each lesion was carried out by application of microwave energy at 100 Watts for 1 minute. Results To acquire an accurate (less 0.5 cm) registration, 4 registration cycles were necessary. In total, seven minutes were required to accomplish precise registration. Successful ablation with complete response in all treated areas was assessed by intraoperative sonography and confirmed by postoperative CT scan. Conclusions This teaching video demonstrates the theoretical and practical key points of LCALS with a special emphasis on preoperative planning, intraoperative registration and accuracy testing by laparoscopic methodology. In contrast to mere ultrasound-guided ablation of liver lesions, LCALS offers a more dimensional targeting and higher safety control. This is currently also in routine use to treat vanishing lesions and other difficult to target focal lesions within the liver.
Resumo:
BACKGROUND: The assessment of driving-relevant cognitive functions in older drivers is a difficult challenge as there is no clear-cut dividing line between normal cognition and impaired cognition and not all cognitive functions are equally important for driving. METHODS: To support decision makers, the Bern Cognitive Screening Test (BCST) for older drivers was designed. It is a computer-assisted test battery assessing visuo-spatial attention, executive functions, eye-hand coordination, distance judgment, and speed regulation. Here we compare the performance in BCST with the performance in paper and pencil cognitive screening tests and the performance in the driving simulator testing of 41 safe drivers (without crash history) and 14 unsafe drivers (with crash history). RESULTS: Safe drivers performed better than unsafe drivers in BCST (Mann-Whitney U test: U = 125.5; p = 0.001) and in the driving simulator (Student's t-test: t(44) = -2.64, p = 0.006). No clear group differences were found in paper and pencil screening tests (p > 0.05; ns). BCST was best at identifying older unsafe drivers (sensitivity 86%; specificity 61%) and was also better tolerated than the driving simulator test with fewer dropouts. CONCLUSIONS: BCST is more accurate than paper and pencil screening tests, and better tolerated than driving simulator testing when assessing driving-relevant cognition in older drivers.