130 resultados para SUPERGRAVITY DOMAIN-WALLS
Resumo:
We present an image quality assessment and enhancement method for high-resolution Fourier-Domain OCT imaging like in sub-threshold retina therapy. A Maximum-Likelihood deconvolution algorithm as well as a histogram-based quality assessment method are evaluated.
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD targeted mRNAs can be degraded by different routes that all involve phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of three known NMD factors thought to be recruited to nonsense mRNAs by interaction with P-UPF1, leading to eventual mRNA degradation. By MS2-mediated tethering of SMG6 and mutants thereof to a reporter RNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 for inducing RNA decay. Our experiments revealed a phosphorylation-independent interaction between SMG6 and UPF1 that is important for SMG6-mediated mRNA decay and using yeast two hybrid assays, we mapped this interaction to the unique stalk region of the UPF1 helicase domain. This region of UPF1 is essential for SMG6-mediated reporter RNA decay and also for NMD. Our results postulate that besides recruiting SMG6 to its RNA substrates, UPF1 is also required to activate its endonuclease activity.
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD targeted mRNAs can be degraded by different routes that all involve phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of three known NMD factors thought to be recruited to nonsense mRNAs by interaction with P-UPF1, leading to eventual mRNA degradation. By MS2-mediated tethering of SMG6 and mutants thereof to a reporter RNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 for inducing RNA decay. Our experiments revealed a phosphorylation-independent interaction between SMG6 and UPF1 that is important for SMG6-mediated mRNA decay and using yeast two hybrid assays, we mapped this interaction to the unique stalk region of the UPF1 helicase domain. This region of UPF1 is essential for SMG6-mediated reporter RNA decay and also for NMD. Our results postulate that besides recruiting SMG6 to its RNA substrates, UPF1 is also required to activate its endonuclease activity.
Resumo:
QUESTIONS UNDER STUDY To improve the response of deteriorating patients during their hospital stay, the University Hospital Bern has introduced a Medical Emergency Team (MET). Aim of this retrospective cohort study is to review the preceding factors, patient characteristics, process parameters and their correlation to patient outcomes of MET calls since the introduction of the team. METHODS Data on patient characteristics, parameters related to MET activation and intervention and patient outcomes were evaluated. A Vital Sign Score (VSS), which is defined as the sum of the occurrence of each vital sign abnormalities, was calculated for all physiological parameters pre MET event, during event and correlation with hospital outcomes. RESULTS A total of 1,628 MET calls in 1,317 patients occurred; 262 (19.9%) of patients with MET calls during their hospital stay died. The VSS pre MET event (odds ratio [OR] 1.78, 95% confidence interval [CI] 1.50-2.13; AUROC 0.63; all p <0.0001) and during the MET call (OR 1.60, 95% CI 1.41-1.83; AUROC 0.62; all p <0.0001) were significantly correlated to patient outcomes. A significant increase in MET calls from 5.2 to 16.5 per 1000 hospital admissions (p <0.0001) and a decrease in cardiac arrest calls in the MET perimeter from 1.6 in 2008 to 0.8 per 1000 admissions was observed during the study period (p = 0.014). CONCLUSIONS The VSS is a significant predictor of mortality in patients assessed by the MET. Increasing MET utilisation coincided with a decrease in cardiac arrest calls in the MET perimeter.
Resumo:
We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.
Resumo:
FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.
Resumo:
BACKGROUND Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. METHODS AND RESULTS To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. CONCLUSIONS Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease.
Resumo:
PURPOSE To report outcomes and assess structural changes in the retina in patients with severe endophthalmitis. METHODS Retrospective, nonrandomized, interventional case series at a tertiary referral centre. Spectral domain optical coherence tomography (OCT) images of both eyes were acquired at least 5 months after pars plana vitrectomy. OCT images were analyzed using retinal layer segmentation. RESULTS Nine patients (46-80 years of age) were included in this study. Average ETDRS visual acuity before treatment was 23 letters and improved to 74 letters. In our cohort we did not find a generalized reduction of retinal layers using automated layer segmentation. CONCLUSION Our findings suggest that prompt treatment of severe endophthalmitis with intravitreal antibiotics followed by pars plana vitrectomy may lead to excellent visual outcomes with minimal damage to the retinal architecture.
Resumo:
We consider a class of models with gauged U(1) R symmetry in 4D N=1 super-gravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Körs and apply their results to the special case of a U(1) R symmetry, in the presence of the Fayet-Iliopoulos term (ξ) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the “naive” field theory approach in global SUSY, in which case U(1) R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1) R charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1) R charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b K , b CK ).
Resumo:
Software dependencies play a vital role in programme comprehension, change impact analysis and other software maintenance activities. Traditionally, these activities are supported by source code analysis; however, the source code is sometimes inaccessible or difficult to analyse, as in hybrid systems composed of source code in multiple languages using various paradigms (e.g. object-oriented programming and relational databases). Moreover, not all stakeholders have adequate knowledge to perform such analyses. For example, non-technical domain experts and consultants raise most maintenance requests; however, they cannot predict the cost and impact of the requested changes without the support of the developers. We propose a novel approach to predicting software dependencies by exploiting the coupling present in domain-level information. Our approach is independent of the software implementation; hence, it can be used to approximate architectural dependencies without access to the source code or the database. As such, it can be applied to hybrid systems with heterogeneous source code or legacy systems with missing source code. In addition, this approach is based solely on information visible and understandable to domain users; therefore, it can be efficiently used by domain experts without the support of software developers. We evaluate our approach with a case study on a large-scale enterprise system, in which we demonstrate how up to 65 of the source code dependencies and 77% of the database dependencies are predicted solely based on domain information.