83 resultados para tracer
Resumo:
In many designs for radioactive waste repositories, cement and clay will come into direct contact. The geochemical contrast between cement and clay will lead to mass fluxes across the interface, which consequently results in alteration of structural and transport properties of both materials that may affect the performance of the multi-barrier system. We present an experimental approach to study cement-clay interactions with a cell to accommodate small samples of cement and clay. The cell design allows both in situ measurement of water content across the sample using neutron radiography and measurement of transport parameters using through-diffusion tracer experiments. The aim of the high- resolution neutron radiography experiments was to monitor changes in water content (porosity) and their spatial extent. Neutron radiographs of several evolving cement-clay interfaces delivered quantitative data which allow resolving local water contents within the sample domain. In the present work we explored the uncertainties of the derived water contents with regard to various input parameters and with regard to the applied image correction procedures. Temporal variation of measurement conditions created absolute uncertainty of the water content in the order of ±0.1 (m3/m3), which could not be fully accounted for by correction procedures. Smaller relative changes in water content between two images can be derived by specific calibrations to two sample regions with different, invariant water contents.
Resumo:
The effect of externally applied l-cysteine and glutathione (GSH) on ATP sulphurylase and adenosine 5′-phosphosulphate reductase (APR), two key enzymes of assimilatory sulphate reduction, was examined in Arabidopsis thaliana root cultures. Addition of increasing l-cysteine to the nutrient solution increased internal cysteine, γ-glutamylcysteine and GSH concentrations, and decreased APR mRNA, protein and extractable activity. An effect on APR could already be detected at 0.2 mm l-cysteine, whereas ATP sulphurylase was significantly affected only at 2 mm l-cysteine. APR mRNA, protein and activity were also decreased by GSH at 0.2 mm and higher concentrations. In the presence of l-buthionine-S, R-sulphoximine (BSO), an inhibitor of GSH synthesis, 0.2 mm l-cysteine had no effect on APR activity, indicating that GSH formed from cysteine was the regulating substance. Simultaneous addition of BSO and 0.5 mm GSH to the culture medium decreased APR mRNA, enzyme protein and activity. ATP sulphurylase activity was not affected by this treatment. Tracer experiments using 35SO42– in the presence of 0.5 mm l-cysteine or GSH showed that both thiols decreased sulphate uptake, APR activity and the flux of label into cysteine, GSH and protein, but had no effect on the activity of all other enzymes of assimilatory sulphate reduction and serine acetyltransferase. These results are consistent with the hypothesis that thiols regulate the flux through sulphate assimilation at the uptake and the APR step. Analysis of radioactive labelling indicates that the flux control coefficient of APR is more than 0.5 for the intracellular pathway of sulphate assimilation. This analysis also shows that the uptake of external sulphate is inhibited by GSH to a greater extent than the flux through the pathway, and that the flux control coefficient of APR for the pathway, including the transport step, is proportionately less, with a significant share of the control exerted by the transport step.
Resumo:
Detrital provenance analyses in orogenic settings, in which sediments are collected at the outlet of a catchment, have become an important tool to estimate how erosion varies in space and time. Here we present how Raman Spectroscopy on Carbonaceous Material (RSCM) can be used for provenance analysis. RSCM provides an estimate of the peak temperature (RSCM-T) experienced during metamorphism. We show that we can infer modern erosion patterns in a catchment by combining new measurements on detrital sands with previously acquired bedrock data. We focus on the Whataroa catchment in the Southern Alps of New Zealand and exploit the metamorphic gradient that runs parallel to the main drainage direction. To account for potential sampling biases, we also quantify abrasion properties using flume experiments and measure the total organic carbon content in the bedrock that produced the collected sands. Finally, we integrate these parameters into a mass-conservative model. Our results first demonstrate that RSCM-T can be used for detrital studies. Second, we find that spatial variations in tracer concentration and erosion have a first-order control on the RSCM-T distributions, even though our flume experiments reveal that weak lithologies produce substantially more fine particles than do more durable lithologies. This result implies that sand specimens are good proxies for mapping spatial variations in erosion when the bedrock concentration of the target mineral is quantified. The modeling suggests that highest present-day erosion rates (in Whataroa catchment) are not situated at the range front but around 10 km into the mountain belt.
Resumo:
Twenty-five public supply wells throughout the hydrogeologically diverse region of Scania, southern Sweden are subjected to environmental tracer analysis (³H–³He,⁴He, CFCs, SF₆ and for one well only also ⁸⁵Kr and ³⁹Ar) to study well and aquifer vulnerability and evaluate possibilities of groundwater age distribution assessment. We find CFC and SF₆ concentrations well above solubility equilibrium with modern atmosphere, indicating local contamination, as well as indications of CFC degradation. The tracer-specific complications considerably constrain possibilities for sound quantitative regional ground- water age distribution assessment and demonstrate the importance of initial qualitative assessment of tracer-specific reliability, as well a need for additional, complementary tracers (e.g. ⁸⁵Kr,³⁹Ar and potentially also ¹⁴C). Lumped parameter modelling yields credible age distribution assessments for representative wells in four type aquifers. Pollution vulnerability of the aquifer types was based on the selected LPM models and qualitative age characterisation. Most vulnerable are unconfined dual porosity and fractured bedrock aquifers, due to a large component of very young groundwater. Unconfined sedimentary aquifers are vulnerable due to young groundwater and a small pre-modern component. Less vulnerable are semi-confined sedimentary or dual-porosity aquifers, due to older age of the modern component and a larger pre-modern component. Confined aquifers appear least vulnerable, due an entirely pre-modern groundwater age distribution (recharged before 1963). Tracer complications aside, environmental tracer analyses and lumped parameter modelling aid in vulnerability assessment and protection of regional groundwater resources.
Resumo:
UNLABELLED The purpose of this study was to evaluate the reproducibility of a new software based analysing system for ventilation/perfusion single-photon emission computed tomography/computed tomography (V/P SPECT/CT) in patients with pulmonary emphysema and to compare it to the visual interpretation. PATIENTS, MATERIAL AND METHODS 19 patients (mean age: 68.1 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. Data were analysed by two independent observers in visual interpretation (VI) and by software based analysis system (SBAS). SBAS PMOD version 3.4 (Technologies Ltd, Zurich, Switzerland) was used to assess counts and volume per lung lobe/per lung and to calculate the count density per lung, lobe ratio of counts and ratio of count density. VI was performed using a visual scale to assess the mean counts per lung lobe. Interobserver variability and association for SBAS and VI were analysed using Spearman's rho correlation coefficient. RESULTS Interobserver agreement correlated highly in perfusion (rho: 0.982, 0.957, 0.90, 0.979) and ventilation (rho: 0.972, 0.924, 0.941, 0.936) for count/count density per lobe and ratio of counts/count density in SBAS. Interobserver agreement correlated clearly for perfusion (rho: 0.655) and weakly for ventilation (rho: 0.458) in VI. CONCLUSIONS SBAS provides more reproducible measures than VI for the relative tracer uptake in V/P SPECT/CTs in patients with pulmonary emphysema. However, SBAS has to be improved for routine clinical use.
Resumo:
Reconstructions of the deposition rate of windblown mineral dust in ocean sediments offer an important means of tracking past climate changes and of assessing the radiative and biogeochemical impacts of dust in past climates. Dust flux estimates in ocean sediments have commonly been based on the operationally defined lithogenic fraction of sediment samples. More recently, dust fluxes have been estimated from measurements of helium and thorium, as rare isotopes of these elements (He-3 and Th-230) allow estimates of sediment flux, and the dominant isotopes (He-4 and Th-232) are uniquely associated with the lithogenic fraction of marine sediments. In order to improve the fidelity of dust flux reconstructions based on He and Th, we present a survey of He and Th concentrations in sediments from dust source areas in East Asia, Australia and South America. Our data show systematic relationships between He and Th concentrations and grain size, with He concentrations decreasing and Th concentrations increasing with decreasing grain size. We find consistent He and Th concentrations in the fine fraction (<5 μm) of samples from East Asia, Australia and Central South America (Puna-Central West Argentina), with Th concentrations averaging 14 μg/g and He concentrations averaging 2 μcc STP/g. We recommend use of these values for estimating dust fluxes in sediments where dust is dominantly fine-grained, and suggest that previous studies may have systematically overestimated Th-based dust fluxes by 30%. Source areas in Patagonia appear to have lower He and Th contents than other regions, as fine fraction concentrations average 0.8 μcc STP/g and 9 μg/g for 4He and 232Th, respectively. The impact of grain size on lithogenic He and Th concentrations should be taken into account in sediments proximal to dust sources where dust grain size may vary considerably. Our data also have important implications for the hosts of He in long-traveled dust and for the 3He/4He ratio used for terrigenous He in studies of extraterrestrial He in sediments and ice. We also investigate the use of He/Th ratios as a provenance tracer. Our results suggest differences in fine fraction He/Th ratios between East Asia, Australia, central South America and Patagonia, with ratios showing a positive relationship with the geological age of source rocks. He/Th ratios may thus provide useful provenance information, for example allowing separation of Patagonian sources from Puna-Central West Argentina or Australian dust sources. He/Th ratios in open-ocean marine sediments are similar to ratios in the fine fraction of upwind dust source areas. He/Th ratios in mid-latitude South Atlantic sediments suggest that dust in this region primarily derives from the Puna-Central West Argentina region (23–32°S) rather than Patagonia (>38°S). In the equatorial Pacific, He/Th ratios are much lower than in extratropical Pacific sediments or potential source areas measured as a part of this study (East Asia, South America, Australia) for reasons that are at present unclear, complicating their use as provenance tracers in this region.
Resumo:
BACKGROUND AND OBJECTIVES Multiple-breath washout (MBW) is an attractive test to assess ventilation inhomogeneity, a marker of peripheral lung disease. Standardization of MBW is hampered as little data exists on possible measurement bias. We aimed to identify potential sources of measurement bias based on MBW software settings. METHODS We used unprocessed data from nitrogen (N2) MBW (Exhalyzer D, Eco Medics AG) applied in 30 children aged 5-18 years: 10 with CF, 10 formerly preterm, and 10 healthy controls. This setup calculates the tracer gas N2 mainly from measured O2 and CO2concentrations. The following software settings for MBW signal processing were changed by at least 5 units or >10% in both directions or completely switched off: (i) environmental conditions, (ii) apparatus dead space, (iii) O2 and CO2 signal correction, and (iv) signal alignment (delay time). Primary outcome was the change in lung clearance index (LCI) compared to LCI calculated with the settings as recommended. A change in LCI exceeding 10% was considered relevant. RESULTS Changes in both environmental and dead space settings resulted in uniform but modest LCI changes and exceeded >10% in only two measurements. Changes in signal alignment and O2 signal correction had the most relevant impact on LCI. Decrease of O2 delay time by 40 ms (7%) lead to a mean LCI increase of 12%, with >10% LCI change in 60% of the children. Increase of O2 delay time by 40 ms resulted in mean LCI decrease of 9% with LCI changing >10% in 43% of the children. CONCLUSIONS Accurate LCI results depend crucially on signal processing settings in MBW software. Especially correct signal delay times are possible sources of incorrect LCI measurements. Algorithms of signal processing and signal alignment should thus be optimized to avoid susceptibility of MBW measurements to this significant measurement bias.
Resumo:
BACKGROUND Catecholamine-O-methyl-tranferase (COMT) initiates dopamine degradation. Its activity is mainly determined by a single nucleotide polymorphism in the COMT gene (Val158Met, rs4680) separating high (Val/Val, COMT(HH)), intermediate (Val/Met, COMT(HL)) and low metabolizers (Met/Met, COMT(LL)). We investigated dopaminergic denervation in the striatum in PD patients according to COMT rs4680 genotype. METHODS Patients with idiopathic PD were assessed for motor severity (UPDRS-III rating scale in OFF-state), dopaminergic denervation using [123I]-FP-CIT SPECT imaging, and genotyped for the COMT rs4680 enzyme. [123I]-FP-CIT binding potential (BP) for each voxel was defined by the ratio of tracer-binding in the region of interest (striatum, caudate nucleus and putamen) to that in a region of non-specific activity. Genotyping was performed using TaqMan(®) SNP genotyping assay. We used a regression model to evaluate the effect of COMT genotype on the BP in the striatum and its sub-regions. RESULTS Genotype distribution was: 11 (27.5%) COMT(HH), 26 (65%) COMT(HL) and 3 (7.5%) COMT(LL). There were no significant differences in disease severity, treatments, or motor scores between genotypes. When adjusted to clinical severity, gender and age, low and intermediate metabolizers showed significantly higher rates of striatal denervation (COMT(HL+LL) BP = 1.32 ± 0.04) than high metabolizers (COMT(HH), BP = 1.6 ± 0.08; F(1.34) = 9.0, p = 0.005). Striatal sub-regions showed similar results. BP and UPDRS-III motor scores (r = 0.44, p = 0.04) (p < 0.001) were highly correlated. There was a gender effect, but no gender-genotype interaction. CONCLUSIONS Striatal denervation differs according to COMT-Val158Met polymorphism. COMT activity may play a role as a compensatory mechanism in PD motor symptoms.