79 resultados para Triplet Repeat Primed PCR (TP-PCR)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Serial quantification of BCR-ABL1 mRNA is an important therapeutic indicator in chronic myeloid leukaemia, but there is a substantial variation in results reported by different laboratories. To improve comparability, an internationally accepted plasmid certified reference material (CRM) was developed according to ISO Guide 34:2009. Fragments of BCR-ABL1 (e14a2 mRNA fusion), BCR and GUSB transcripts were amplified and cloned into pUC18 to yield plasmid pIRMM0099. Six different linearised plasmid solutions were produced with the following copy number concentrations, assigned by digital PCR, and expanded uncertainties: 1.08±0.13 × 10(6), 1.08±0.11 × 10(5), 1.03±0.10 × 10(4), 1.02±0.09 × 10(3), 1.04±0.10 × 10(2) and 10.0±1.5 copies/μl. The certification of the material for the number of specific DNA fragments per plasmid, copy number concentration of the plasmid solutions and the assessment of inter-unit heterogeneity and stability were performed according to ISO Guide 35:2006. Two suitability studies performed by 63 BCR-ABL1 testing laboratories demonstrated that this set of 6 plasmid CRMs can help to standardise a number of measured transcripts of e14a2 BCR-ABL1 and three control genes (ABL1, BCR and GUSB). The set of six plasmid CRMs is distributed worldwide by the Institute for Reference Materials and Measurements (Belgium) and its authorised distributors (https://ec.europa.eu/jrc/en/reference-materials/catalogue/; CRM code ERM-AD623a-f).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leucocytes thereby causing fatal immunoproliferative diseases. Buparvaquone, a hydroxynaphthoquinone related to parvaquone, is the only drug available against Theileria. The drug is only effective at the onset of infection and emerging resistance underlines the need for identifying alternative compounds. Current drug assays employ monitoring of proliferation of infected cells, with apoptosis of the infected host cell as a read-out, but it is often unclear whether active compounds directly impair the viability of the parasite or primarily induce host cell death. We here report on the development of a quantitative reverse transcriptase real time PCR method based on two Theileria genes, tasp and tap104, which are both expressed in schizonts. Upon in vitro treatment of T. annulata infected bovine monocytes with buparvaquone, TaSP and Tap104 mRNA expression levels significantly decreased in relation to host cell actin already within 4 h of drug exposure, while significant differences in host cell proliferation were detectable only after 48-72 h. TEM revealed marked alterations of the schizont ultrastructure already after 2 h of buparvaquone treatment, while the host cell remained unaffected. Expression of TaSP and Tap104 proteins showed a marked decrease only after 24 h. Therefore, the analysis of expression levels of mRNA coding for TaSP and Tap104 allows to directly measuring impairment of parasite viability. We subsequently applied this method using a series of compounds affecting different targets in other apicomplexan parasites, and show that monitoring of TaSP- and Tap104 mRNA levels constitutes a suitable tool for anti-theilerial drug development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During infections, Giardia lamblia undergoes a continuous change of its major surface antigens, the variant-specific surface proteins (VSPs). Many studies on antigenic variation have been performed using G. lamblia clone GS/M-83-H7, which expresses surface antigen VSP H7. The present study was focused on the identification and characterization of vsp gene sequences within the genome of the clonal G. lamblia GS/M-83-H7 line. For this purpose, we applied a PCR which specifically amplified truncated sequences from the 3'-terminal region of the vsp genes. Upon cloning, most of the vsp gene amplification products were shown to be approximately identical in size and thus could not be distinguished from each other by conventional gel electrophoresis. In order to pre-estimate the sequence complexity within the large panel of vsp clones isolated, we elaborated a novel concept which facilitated our large-scale genetic screening approach: PCR products from cloned DNA molecules were generated and then subjected to a DNA melting profile assay based on the use of the LightCycler Instrument. This high-throughput assay system proved to be well suited to monitor sequence differences between the amplification products from closely related vsp genes and thus could be used for the primary, sequence-related discrimination of the corresponding clones. After testing 50 candidates, vsp clones could be divided into five groups, each characterized by an individual DNA melting profile of the corresponding amplification products. Sequence analysis of some of these 50 candidates confirmed data from the aforementioned assay in that clones were demonstrated to be identical within, but different between, the distinct groups. The nucleotide and deduced amino acid sequences of five representative vsp clones showed high similarities both among each other and also with the corresponding gene segment of the variant-specific surface antigen (VSP H7) expressed by the original GS/M-83-H7 variant type. Furthermore, three of the genomic vsp sequences turned out to be identical to vsp sequences that represented previously characterized transcription products from in vivo- or in vitro-switched GS/M-83-H7 trophozoites. In conclusion, the DNA melting profile assay seems to be a versatile tool for the PCR-based genotyping of moderately or highly diversified sequence orthologues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detecting AMR determinants could provide valuable tools for surveillance, epidemiological studies and to inform individual case management. We developed a fast (<1.5 hrs) SYBR-green based real-time PCR method with high resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully-characterized N. gonorrhoeae strains, 19 commensal Neisseria spp., and an additional panel of 193 gonococcal isolates. Results were compared with culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with non-gonococcal Neisseria species and the detection limit was 10(3)-10(4) gDNA copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity 100%, specificity 90%), cefixime (sensitivity 92%, specificity 94%), azithromycin and spectinomycin (both sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations generating resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens but this method can be used to screen collections of gonococcal isolates for AMR more quickly than with current culture-based AMR testing.