86 resultados para Staphylococcus hominis
Resumo:
Background The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations. Results Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI. Conclusions In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene.
Resumo:
Four Staphylococcus aureus-Escherichia coli shuttle vectors were constructed for gene expression and production of tagged fusion proteins. Vectors pBUS1-HC and pTSSCm have no promoter upstream of the multiple cloning site (MCS), and this allows study of genes under the control of their native promoters, and pBUS1-Pcap-HC and pTSSCm-Pcap contain the strong constitutive promoter of S. aureus type 1 capsule gene 1A (Pcap) upstream of a novel MCS harboring codons for the peptide tag Arg-Gly-Ser-hexa-His (rgs-his6). All plasmids contained the backbone derived from pBUS1, including the E. coli origin ColE1, five copies of terminator rrnB T1, and tetracycline resistance marker tet(L) for S. aureus and E. coli. The minimum pAMα1 replicon from pBUS1 was improved through either complementation with the single-strand origin oriL from pUB110 (pBUS1-HC and pBUS1-Pcap-HC) or substitution with a pT181-family replicon (pTSSCm and pTSSCm-Pcap). The new constructs displayed increased plasmid yield and segregational stability in S. aureus. Furthermore, pBUS1-Pcap-HC and pTSSCm-Pcap offer the potential to generate C-terminal RGS-His6 translational fusions of cloned genes using simple molecular manipulation. BcgI-induced DNA excision followed by religation converts the TGA stop codon of the MCS into a TGC codon and links the rgs-his6 codons to the 3' end of the target gene. The generation of the rgs-his6 codon-fusion, gene expression, and protein purification were demonstrated in both S. aureus and E. coli using the macrolide-lincosamide-streptogramin B resistance gene erm(44) inserted downstream of Pcap. The new His tag expression system represents a helpful tool for the direct analysis of target gene function in staphylococcal cells.
Resumo:
OBJECTIVE To determine the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization in hemodialysis patients and to analyze the cost-effectiveness of our screening approach compared with an alternative strategy. DESIGN Screening study and cost-effectiveness analysis. METHODS Analysis of twice-yearly MRSA prevalence studies conducted in the hemodialysis unit of a 950-bed tertiary care hospital from January 1, 2004, through December 31, 2013. For this purpose, nasal swab samples were cultured on MRSA screening agar (mannitol-oxacillin biplate). RESULTS There were 20 mass screenings during the 10-year study period. We identified 415 patients participating in at least 1 screening, with an average of 4.5 screenings per patient. Of 415 screened patients, 15 (3.6%) were found to be MRSA carriers. The first mass screening in 2004 yielded the highest percentage of MRSA (6/101 [6%]). Only 7 subsequent screenings revealed new MRSA carriers, whereas 4 screenings confirmed previously known carriers, and 8 remained negative. None of the carriers developed MRSA bacteremia during the study period. The total cost of our screening approach, that is, screening and isolation costs, was US $93,930. The total cost of an alternative strategy (ie, no mass screening administered) would be equivalent to costs of isolation of index cases and contact tracing was estimated to be US $5,382 (difference, US $88,548). CONCLUSIONS In an area of low MRSA endemicity (<5%), regular nasal screenings of a high-risk population yielded a low rate of MRSA carriers. Twice-yearly MRSA screening of dialysis patients is unlikely to be cost-effective if MRSA prevalence is low. Infect. Control Hosp. Epidemiol. 2015;00(0):1-4.
Resumo:
BACKGROUND Staphylococcus aureus has long been recognized as a major pathogen. Methicillin-resistant strains of S. aureus (MRSA) and methicillin-resistant strains of S. epidermidis (MRSE) are among the most prevalent multiresistant pathogens worldwide, frequently causing nosocomial and community-acquired infections. METHODS In the present pilot study, we tested a polymerase chain reaction (PCR) method to quickly differentiate Staphylococci and identify the mecA gene in a clinical setting. RESULTS Compared to the conventional microbiology testing the real-time PCR assay had a higher detection rate for both S. aureus and coagulase-negative Staphylococci (CoNS; 55 vs. 32 for S. aureus and 63 vs. 24 for CoNS). Hands-on time preparing DNA, carrying out the PCR, and evaluating results was less than 5 h. CONCLUSIONS The assay is largely automated, easy to adapt, and has been shown to be rapid and reliable. Fast detection and differentiation of S. aureus, CoNS, and the mecA gene by means of this real-time PCR protocol may help expedite therapeutic decision-making and enable earlier adequate antibiotic treatment.
Resumo:
BACKGROUND Chronic haemodialysis patients are a high-risk population for meticillin-resistant Staphylococcus aureus (MRSA) colonization, which is a precursor of infection. AIM To summarize the effect of nasal (± whole-body wash) MRSA decolonization in haemodialysis patients by means of a systematic review and meta-analysis. METHODS We identified eligible studies using Medline, Embase, the Cochrane database, clinicaltrials.org, and conference abstracts investigating the success of MRSA decolonization in haemodialysis patients. For the statistical analysis, we used Stata 13 to express study-specific proportions with 95% confidence intervals. A likelihood ratio test was used to assess inter-study heterogeneity. FINDINGS Six published prospective cohort studies and one study described in a conference abstract met our inclusion criteria. From 1150 haemodialysis patients enrolled in these studies, MRSA was isolated from nasal swabs of 147 (12.8%) patients. Six of the trials used mupirocin nasal ointment and combined it with chlorhexidine body washes for decolonization. The most widely used protocol was a five-day course of mupirocin nasal ointment application three times a day, and chlorhexidine body wash once daily. The pooled success rate of decolonization was 0.88 (95% confidence interval: 0.75-0.95). A likelihood ratio test of the fixed versus the random-effects model showed significant inter-study heterogeneity (P = 0.047). Four of seven studies determined subsequent MRSA infections in 94 carriers overall, two (2%) of which experienced infection. CONCLUSION The use of mupirocin together with whole-body decolonization is highly effective in eradicating MRSA carriage in haemodialysis patients. The current literature, however, is characterized by a lack of comparative effectiveness studies for this intervention.
Resumo:
Staphylococcus aureus is globally one of the most important pathogens causing contagious mastitis in cattle. Previous studies using ribosomal spacer (RS)-PCR, however, demonstrated in Swiss cows that Staph. aureus isolated from bovine intramammary infections are genetically heterogeneous, with Staph. aureus genotype B (GTB) and GTC being the most prominent genotypes. Furthermore, Staph. aureus GTB was found to be contagious, whereas Staph. aureus GTC and all the remaining genotypes were involved in individual cow disease. In addition to RS-PCR, other methods for subtyping Staph. aureus are known, including spa typing and multilocus sequence typing (MLST). They are based on sequencing the spa and various housekeeping genes, respectively. The aim of the present study was to compare the 3 analytic methods using 456 strains of Staph. aureus isolated from milk of bovine intramammary infections and bulk tanks obtained from 12 European countries. Furthermore, the phylogeny of animal Staph. aureus was inferred and the zoonotic transfer of Staph. aureus between cattle and humans was studied. The analyzed strains could be grouped into 6 genotypic clusters, with CLB, CLC, and CLR being the most prominent ones. Comparing the 3 subtyping methods, RS-PCR showed the highest resolution, followed by spa typing and MLST. We found associations among the methods but in many cases they were unsatisfactory except for CLB and CLC. Cluster CLB was positive for clonal complex (CC)8 in 99% of the cases and typically positive for t2953; it is the cattle-adapted form of CC8. Cluster CLC was always positive for t529 and typically positive for CC705. For CLR and the remaining subtypes, links among the 3 methods were generally poor. Bovine Staph. aureus is highly clonal and a few clones predominate. Animal Staph. aureus always evolve from human strains, such that every human strain may be the ancestor of a novel animal-adapted strain. The zoonotic transfer of IMI- and milk-associated strains of Staph. aureus between cattle and humans seems to be very limited and different hosts are not considered as a source for mutual, spontaneous infections. Spillover events, however, may happen.
Resumo:
Staphylococcus aureus is globally one of the most important pathogens causing contagious mastitis in cattle. Previous studies, however, have demonstrated in Swiss cows that Staph. aureus isolated from bovine intramammary infection is genetically heterogeneous, with Staph. aureus genotype B (GTB) and GTC being the most prominent genotypes. In addition, Staph. aureus GTB was found to be contagious, whereas Staph. aureus GTC and all the remaining genotypes were involved in individual cow disease. The aim of this study was to subtype strains of Staph. aureus isolated from bovine mastitic milk and bulk tank milk to obtain a unified view of the presence of bovine staphylococcal subtypes in 12 European countries. A total of 456 strains of Staph. aureus were subjected to different typing methods: ribosomal spacer PCR, detection of enterotoxin genes, and detection of gene polymorphisms (lukE, coa). Major genotypes with their variants were combined into genotypic clusters (CL). This study revealed 5 major CL representing 76% of all strains and comprised CLB, CLC, CLF, CLI, and CLR. The clusters were characterized by the same genetic properties as the Swiss isolates, demonstrating high clonality of bovine Staph. aureus. Interestingly, CLB was situated in central Europe whereas the other CL were widely disseminated. The remaining 24% of the strains comprised 41 genotypes and variants, some of which (GTAM, GTBG) were restricted to certain countries; many others, however, were observed only once.
Resumo:
A novel staphylococcal cassette chromosome mec (SCCmec) composite island (SCCmecAI16-SCCczrAI16-CI) was identified in Staphylococcus pseudintermedius. Four integration site sequences for SCC subdivided the 60,734-bp island into 41,232-bp SCCmecAI16, 19,400-bp SCCczrAI16, and 102-bp SCC-likeAI16 elements. SCCmecAI16 represents a new combination of ccrA1B3 genes with a class A mec complex. SCCczrAI16 contains ccrA1B6 and genes related to restriction modification and heavy metal resistance. SCCmecAI16-SCCczrAI16-CI was found in methicillin-resistant S. pseudintermedius sequence type 112 (ST112) and ST111 isolated from dogs and veterinarians in Thailand.
Resumo:
Genome alignment of a macrolide, lincosamide, and streptogramin B (MLSB)-resistant Staphylococcus fleurettii strain with an MLSB-susceptible S. fleurettii strain revealed a novel 11,513-bp genomic island carrying the new erythromycin resistance methylase gene erm(45). This gene was shown to confer inducible MLSB resistance when cloned into Staphylococcus aureus. The erm(45)-containing island was integrated into the housekeeping gene guaA in S. fleurettii and was able to form a circular intermediate but was not transmissible to S. aureus.
Resumo:
Knowledge about the dynamics of methicillin-resistant Staphylococcus aureus (MRSA) in pigs lacks detail at the level of individual animal. The aim of our study was therefore to determine the colonisation status of MRSA in individual pigs from birth to slaughter in order to gain a better understanding of substantial factors involved in transmission. Two farrow-to-finish and two grow-to-finish herds were included in the study. A total of 1728 nasal swabs from 390 pigs and 592 environmental wipes were collected at 11 different time points. Intermittent colonisation throughout the entire production cycle was conspicuous in the tracking of MRSA in individual pigs. Almost all pigs from a MRSA-positive herd changed MRSA status several times, which implies that pigs are transiently rather than permanently colonised. We highly recommend the definition of MRSA status at herd level rather that at the level of the individual pig when considering prevention measures against MRSA. Therefore, to avoid the further spread of MRSA in countries with moderate prevalence, such as in Switzerland, defining farms as MRSA positive or MRSA negative and allowing the trade of pigs only within herds of the same status seems feasible. This will also be important for combating the further dissemination of livestock-associated (LA)-MRSA into healthcare facilities and the community via humans who have close contact with animals.
Resumo:
There is a growing concern by regulatory authorities for the selection of antibiotic resistance caused by the use of biocidal products. We aimed to complete the detailed information on large surveys by investigating the relationship between biocide and antibiotic susceptibility profiles of a large number of Staphylococcus aureus isolates using four biocides and antibiotics commonly used in clinical practice. The minimal inhibitory concentration (MIC) for most clinically-relevant antibiotics was determined according to the standardized methodology for over 1600 clinical S. aureus isolates and compared to susceptibility profiles of benzalkonium chloride, chlorhexidine, triclosan, and sodium hypochlorite. The relationship between antibiotic and biocide susceptibility profiles was evaluated using non-linear correlations. The main outcome evidenced was an absence of any strong or moderate statistically significant correlation when susceptibilities of either triclosan or sodium hypochlorite were compared for any of the tested antibiotics. On the other hand, correlation coefficients for MICs of benzalkonium chloride and chlorhexidine were calculated above 0.4 for susceptibility to quinolones, beta-lactams, and also macrolides. Our data do not support any selective pressure for association between biocides and antibiotics resistance and furthermore do not allow for a defined risk evaluation for some of the compounds. Importantly, our data clearly indicate that there does not involve any risk of selection for antibiotic resistance for the compounds triclosan and sodium hypochlorite. These data hence infer that biocide selection for antibiotic resistance has had so far a less significant impact than feared.