94 resultados para PULMONARY ARTERIAL-HYPERTENSION
Pulmonary hypertension presenting with apnea, cyanosis and failure to thrive in a young child. Chest
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
A 20-month old girl with severe pulmonary hypertension and cardiomegaly was admitted to the paediatric intensive care unit with right ventricular failure of unknown origin. Only after decompression of the heart chambers under extracorporeal membrane oxygenation (ECMO), did the pathognomonic membrane of Cor triatriatum become visible on echocardiography. The patient underwent successful surgical correction and subsequently cardiac function recovered completely. Cor triatriatum remains a rare congenital cardiac disorder with a variable presentation, often including recurrent respiratory infections before right-sided heart failure occurs. This case illustrates that ECMO can serve not only as a bridge to diagnosis, but can also facilitate correct diagnosis. Given the excellent outcome after surgical treatment, it is crucial that cardiologists rule out the possibility of cor triatriatum when assessing a child with unexplained pulmonary hypertension.
Pulmonary hypertension in high-altitude dwellers: novel mechanisms, unsuspected predisposing factors
Resumo:
Studies of high-altitude populations, and in particular of maladapted subgroups, may provide important insight into underlying mechanisms involved in the pathogenesis of hypoxemia-related disease states in general. Over the past decade, studies involving short-term hypoxic exposure have greatly advanced our knowledge regarding underlying mechanisms and predisposing events of hypoxic pulmonary hypertension. Studies in high altitude pulmonary edema (HAPE)-prone subjects, a condition characterized by exaggerated hypoxic pulmonary hypertension, have provided evidence for the central role of pulmonary vascular endothelial and respiratory epithelial nitric oxide (NO) for pulmonary artery pressure homeostasis. More recently, it has been shown that pathological events during the perinatal period (possibly by impairing pulmonary NO synthesis), predispose to exaggerated hypoxic pulmonary hypertension later in life. In an attempt to translate some of this new knowledge to the understanding of underlying mechanisms and predisposing events of chronic hypoxic pulmonary hypertension, we have recently initiated a series of studies among high-risk subpopulations (experiments of nature) of high-altitude dwellers. These studies have allowed to identify novel risk factors and underlying mechanisms that may predispose to sustained hypoxic pulmonary hypertension. The aim of this article is to briefly review this new data, and demonstrate that insufficient NO synthesis/bioavailability, possibly related in part to augmented oxidative stress, may represent an important underlying mechanism predisposing to pulmonary hypertension in high-altitude dwellers.
Resumo:
Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe disease that has been ignored for a long time. However, with the development of improved therapeutic modalities, cardiologists and thoracic surgeons have shown increasing interest in the diagnostic work-up of this entity. The diagnosis and management of chronic thromboembolic pulmonary hypertension require a multidisciplinary approach involving the specialties of pulmonary medicine, cardiology, radiology, anesthesiology and thoracic surgery. With this approach, pulmonary endarterectomy (PEA) can be performed with an acceptable mortality rate. This review article describes the developments in magnetic resonance (MR) imaging techniques for the diagnosis of chronic thromboembolic pulmonary hypertension. Techniques include contrast-enhanced MR angiography (ce-MRA), MR perfusion imaging, phase-contrast imaging of the great vessels, cine imaging of the heart and combined perfusion-ventilation MR imaging with hyperpolarized noble gases. It is anticipated that MR imaging will play a central role in the initial diagnosis and follow-up of patients with CTEPH.
Resumo:
BACKGROUND: Elevated pulmonary vascular resistance (PVR) is relevant to prognosis of congestive heart failure and heart transplantation. Proof of reversibility by pharmacologic testing in potential transplantation candidates is important because it indicates a reduced probability of right ventricular failure or death in the early post-transplant period. This study aimed to clarify the possible extent of acute reversibility of elevated PVR in a large, consecutive cohort of heart transplant candidates. METHODS: This study included 208 consecutive patients (age 52 +/- 10 years, 89% men and 11% women, ejection fraction 21 +/- 9%, Vo2max 12.6 +/- 4.2 ml/kg/min) being evaluated for heart transplantation in 7 transplant centers in Germany and Switzerland. Testing was performed with increasing intravenous doses of prostaglandin E1 (PGE1; average maximum dose 173 +/- 115 ng/kg/min for at least 10 minutes) in 92 patients exhibiting a baseline PVR of > 2.5 Wood units (WU) and/or a transpulmonary gradient (TPG) of > 12 mm Hg. RESULTS: PGE1 testing lowered PVR from 4.1 +/- 2.0 to 2.1 +/- 1.1 WU (p < 0.01), increased cardiac output from 3.8 +/- 1.0 to 5.0 +/- 1.5 liters/min (p < 0.01), and decreased TPG from 14 +/- 4 to 10 +/- 3 mm Hg (p < 0.01), mean pulmonary artery pressure (PAM) from 39 +/- 9 to 29 +/- 9 mm Hg (p < 0.01) and mean pulmonary capillary wedge pressure (PCWP) from 24 +/- 7 to 19 +/- 9 mm Hg (p < 0.01). Mean aortic pressure (MAP) decreased to 85% and systemic vascular resistance (SVR) to 65% of baseline values (p < 0.01). Symptomatic systemic hypotension was not observed. For the whole population the percentage of patients with PVR > 2.5 WU was reduced from 44.2% to 10.5% with PGE1. PVR decreased in each patient; only 2 patients (1%) remained ineligible for listing because of a final PVR of > 4.0 WU. TPG, ejection fraction and male gender were independent predictors of reversibility of PVR. CONCLUSIONS: Elevated PVR in heart transplant candidates is highly reversible and can be normalized during acute pharmacologic testing with PGE1.
Resumo:
CONTEXT: Individuals susceptible to high-altitude pulmonary edema (HAPE) are characterized by exaggerated pulmonary hypertension and arterial hypoxemia at high altitude, but the underlying mechanism is incompletely understood. Anecdotal evidence suggests that shunting across a patent foramen ovale (PFO) may exacerbate hypoxemia in HAPE. OBJECTIVE: We hypothesized that PFO is more frequent in HAPE-susceptible individuals and may contribute to more severe arterial hypoxemia at high altitude. DESIGN, SETTING, AND PARTICIPANTS: Case-control study of 16 HAPE-susceptible participants and 19 mountaineers resistant to this condition (repeated climbing to peaks above 4000 m and no symptoms of HAPE). MAIN OUTCOME MEASURES: Presence of PFO determined by transesophageal echocardiography, estimated pulmonary artery pressure by Doppler echocardiography, and arterial oxygen saturation measured by pulse oximetry in HAPE-susceptible and HAPE-resistant participants at low (550 m) and high altitude (4559 m). RESULTS: The frequency of PFO was more than 4 times higher in HAPE-susceptible than in HAPE-resistant participants, both at low altitude (56% vs 11%, P = .004; odds ratio [OR], 10.9 [95% confidence interval {CI}, 1.9-64.0]) and high altitude (69% vs 16%, P = .001; OR, 11.7 [95% CI, 2.3-59.5]). At high altitude, mean (SD) arterial oxygen saturation prior to the onset of pulmonary edema was significantly lower in HAPE-susceptible participants than in the control group (73% [10%] vs 83% [7%], P = .001). Moreover, in the HAPE-susceptible group, participants with a large PFO had more severe arterial hypoxemia (65% [6%] vs 77% [8%], P = .02) than those with smaller or no PFO. CONCLUSIONS: Patent foramen ovale was roughly 4 times more frequent in HAPE-susceptible mountaineers than in participants resistant to this condition. At high altitude, HAPE-susceptible participants with a large PFO had more severe hypoxemia. We speculate that at high altitude, a large PFO may contribute to exaggerated arterial hypoxemia and facilitate HAPE.
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. Over the past decade, it has become clear that the results of high-altitude research may have important implications not only for the understanding of diseases in the millions of people living permanently at high altitude, but also for the treatment of hypoxemia-related disease states in patients living at low altitude. High-altitude pulmonary edema (HAPE) is a life-threatening condition occurring in predisposed, but otherwise healthy subjects, and, therefore, allows to study underlying mechanisms of pulmonary edema in humans, in the absence of confounding factors. Over the past decade, evidence has accumulated that HAPE results from the conjunction of two major defects, augmented alveolar fluid flooding resulting from exaggerated hypoxic pulmonary hypertension, and impaired alveolar fluid clearance related to defective respiratory transepithelial sodium transport. Here, after a brief presentation of the clinical features of HAPE, we review this novel concept. We provide experimental evidence for the novel concept that impaired pulmonary endothelial and epithelial nitric oxide synthesis and/or bioavailability may represent the central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction and alveolar fluid flooding. We demonstrate that exaggerated pulmonary hypertension, while possibly a condition sine qua non, may not be sufficient to cause HAPE, and how defective alveolar fluid clearance may represent a second important pathogenic mechanism. Finally, we outline how this insight gained from studies in HAPE may be translated into the management of hypoxemia related disease states in general.
Resumo:
Atrial septal defects (ASDs) are typically asymptomatic in infancy and early childhood, and elective defect closure is usually performed at ages of 4 to 6 years. Severe pulmonary hypertension (PH) complicating an ASD is seen in adulthood and has only occasionally been reported in small children. A retrospective study was undertaken to evaluate the incidence of severe PH complicating an isolated ASD and requiring early surgical correction. During a 10-year period (1996 to 2006), 355 pediatric patients underwent treatment for isolated ASDs either surgically or by catheter intervention at 2 tertiary referral centers. Two hundred ninety-seven patients had secundum ASDs, and 58 had primum ASDs with mild to moderate mitral regurgitation. Eight infants were found with isolated ASDs (6 with secundum ASDs and 2 with primum ASDs) associated with significant PH, accounting for 2.2% of all patients with ASDs at the centers. These 8 infants had invasively measured pulmonary artery pressures of 50% to 100% of systemic pressure. They were operated in the first year of life and had complicated postoperative courses requiring specific treatment for PH for up to 16 weeks postoperatively. The ultimate outcomes in all 8 infants were good, with persistent normalization of pulmonary pressures during midterm follow-up of up to 60 months (median 28). All other patients with ASDs had normal pulmonary pressures, and the mean age at defect closure was significantly older, at 6.2 years for secundum ASDs and 3.2 years for primum ASDs. In conclusion, ASDs were rarely associated with significant PH in infancy but then required early surgery and were associated with excellent midterm outcomes in these patients.
Resumo:
OBJECTIVE: To evaluate the agreement of blood pressure measurements and hypertension scores obtained by use of 3 indirect arterial blood pressure measurement devices in hospitalized dogs. Design-Diagnostic test evaluation. ANIMALS: 29 client-owned dogs. PROCEDURES: 5 to 7 consecutive blood pressure readings were obtained from each dog on each of 3 occasions with a Doppler ultrasonic flow detector, a standard oscillometric device (STO), and a high-definition oscillometric device (HDO). RESULTS: When the individual sets of 5 to 7 readings were evaluated, the coefficient of variation for systolic arterial blood pressure (SAP) exceeded 20% for 0% (Doppler), 11 % (STO), and 28% (HDO) of the sets of readings. After readings that exceeded a 20% coefficient of variation were discarded, repeatability was within 25 (Doppler), 37 (STO), and 39 (HDO) mm Hg for SAP. Correlation of mean values among the devices was between 0.47 and 0.63. Compared with Doppler readings, STO underestimated and HDO overestimated SAP. Limits of agreement between mean readings of any 2 devices were wide. With the hypertension scale used to score SAP, the intraclass correlation of scores was 0.48. Linear-weighted inter-rater reliability between scores was 0.40 (Doppler vs STO), 0.38 (Doppler vs HDO), and 0.29 (STO vs HDO). CONCLUSIONS AND CLINICAL RELEVANCE: Results of this study suggested that no meaningful clinical comparison can be made between blood pressure readings obtained from the same dog with different indirect blood pressure measurement devices.
Resumo:
OBJECTIVES The aim of this study was to evaluate right ventricular (RV) and left ventricular function and pulmonary circulation in chronic mountain sickness (CMS) patients with rest and stress echocardiography compared with healthy high-altitude (HA) dwellers. BACKGROUND CMS or Monge's disease is defined by excessive erythrocytosis (hemoglobin >21 g/dl in males, 19 g/dl in females) and severe hypoxemia. In some cases, a moderate or severe increase in pulmonary pressure is present, suggesting a similar pathogenesis of pulmonary hypertension. METHODS In La Paz (Bolivia, 3,600 m sea level), 46 CMS patients and 40 HA dwellers of similar age were evaluated at rest and during semisupine bicycle exercise. Pulmonary artery pressure (PAP), pulmonary vascular resistance, and cardiac function were estimated by Doppler echocardiography. RESULTS Compared with HA dwellers, CMS patients showed RV dilation at rest (RV mid diameter: 36 ± 5 mm vs. 32 ± 4 mm, CMS vs. HA, p = 0.001) and reduced RV fractional area change both at rest (35 ± 9% vs. 43 ± 9%, p = 0.002) and during exercise (36 ± 9% vs. 43 ± 8%, CMS vs. HA, p = 0.005). The RV systolic longitudinal function (RV-S') decreased in CMS patients, whereas it increased in the control patients (p < 0.0001) at peak stress. The RV end-systolic pressure-area relationship, a load independent surrogate of RV contractility, was similar in CMS patients and HA dwellers with a significant increase in systolic PAP and pulmonary vascular resistance in CMS patients (systolic PAP: 50 ± 12 mm Hg vs. 38 ± 8 mm Hg, CMS vs. HA, p < 0.0001; pulmonary vascular resistance: 2.9 ± 1 mm Hg/min/l vs. 2.2 ± 1 mm Hg/min/l, p = 0.03). Both groups showed comparable systolic and diastolic left ventricular function both at rest and during stress. CONCLUSIONS Comparable RV contractile reserve in CMS and HA suggests that the lower resting values of RV function in CMS may represent a physiological adaptation to chronic hypoxic conditions rather than impaired RV function. (Chronic Mountain Sickness, Systemic Vascular Function [CMS]; NCT01182792).
Resumo:
Pulmonary vasoconstriction represents a physiological adaptive mechanism to high altitude. If exaggerated, however, it is associated with important morbidity and mortality. Recent mechanistic studies using short-term acute high altitude exposure have provided insight into the importance of defective vascular endothelial and respiratory epithelial nitric oxide (NO) synthesis, increased endothelin-1 bioavailability, and overactivation of the sympathetic nervous system in causing exaggerated hypoxic pulmonary hypertension in humans. Based on these studies, drugs that increase NO bioavailability, attenuate endothelin-1 induced pulmonary vasoconstriction, or prevent exaggerated sympathetic activation have been shown to be useful for the treatment/prevention of exaggerated pulmonary hypertension during acute short-term high altitude exposure. The mechanisms underpinning chronic pulmonary hypertension in high altitude dwellers are less well understood, but recent evidence suggests that they differ in some aspects from those involved in short-term adaptation to high altitude. These differences have consequences for the choice of the treatment for chronic pulmonary hypertension at high altitude. Finally, recent data indicate that fetal programming of pulmonary vascular dysfunction in offspring of preeclampsia and children generated by assisted reproductive technologies represents a novel and frequent cause of pulmonary hypertension at high altitude. In animal models of fetal programming of hypoxic pulmonary hypertension, epigenetic mechanisms play a role, and targeting of these mechanisms with drugs lowers pulmonary artery pressure. If epigenetic mechanisms also are operational in the fetal programming of pulmonary vascular dysfunction in humans, such drugs may become novel tools for the treatment of hypoxic pulmonary hypertension.