88 resultados para Neurotransmitters in epilepsy
Resumo:
PURPOSE Patients with Alzheimer's disease (AD) have an increased risk of developing seizures or epilepsy. Little is known about the role of risk factors and about the risk of developing seizures/epilepsy in patients with vascular dementia (VD). The aim of this study was to assess incidence rates (IRs) of seizures/epilepsy in patients with AD, VD, or without dementia, and to identify potential risk factors of seizures or epilepsy. METHODS We conducted a follow-up study with a nested case-control analysis using the United Kingdom-based General Practice Research Database (GPRD). We identified patients aged ≥65 years with an incident diagnosis of AD or VD between 1998 and 2008 and a matched comparison group of dementia-free patients. Conditional logistic regression was used to estimate the odds ratio (OR) with a 95% confidence interval (CI) of developing seizures/epilepsy in patients with AD or VD, stratified by age at onset and duration of dementia as well as by use of antidementia drugs. KEY FINDINGS Among 7,086 cases with AD, 4,438 with VD, and 11,524 matched dementia-free patients, we identified 180 cases with an incident diagnosis of seizures/epilepsy. The IRs of epilepsy/seizures for patients with AD or VD were 5.6/1,000 person-years (py) (95% CI 4.6-6.9) and 7.5/1,000 py (95% CI 5.7-9.7), respectively, and 0.8/1,000 py (95% CI 0.6-1.1) in the dementia-free group. In the nested case-control analysis, patients with longer standing (≥3 years) AD had a slightly higher risk of developing seizures or epilepsy than those with a shorter disease duration, whereas in patients with VD the contrary was observed. SIGNIFICANCE Seizures or epilepsy were substantially more common in patients with AD and VD than in dementia-free patients. The role of disease duration as a risk factor for seizures/epilepsy seems to differ between AD and VD.
Resumo:
To evaluate the spectrum and regulation of matrix metalloproteinases (MMPs) in bacterial meningitis (BM), concentrations of MMP-2, MMP-3, MMP-8, and MMP-9 and endogenous inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were measured in the cerebrospinal fluid (CSF) of 27 children with BM. MMP-8 and MMP-9 were detected in 91% and 97%, respectively, of CSF specimens from patients but were not detected in control patients. CSF levels of MMP-9 were higher (P<.05) in 5 patients who developed hearing impairment or secondary epilepsy than in those who recovered without neurological deficits. Levels of MMP-9 correlated with concentrations of TIMP-1 (P<.001) and tumor necrosis factor-alpha (P=.03). Repeated lumbar punctures showed that levels of MMP-8 and MMP-9 were regulated independently and did not correlate with the CSF cell count. Therefore, MMPs may derive not only from granulocytes infiltrating the CSF space but also from parenchymal cells of the meninges and brain. High concentrations of MMP-9 are a risk factor for the development of postmeningitidal neurological sequelae.
Resumo:
Epileptic seizures are associated with high behavioral stereotypy of the patients. In the EEG of epilepsy patients characteristic signal patterns can be found during and between seizures. Here we use ordinal patterns to analyze EEGs of epilepsy patients and quantify the degree of signal determinism. Besides relative signal redundancy and the fraction of forbidden patterns we introduce the fraction of under-represented patterns as a new measure. Using the logistic map, parameter scans are performed to explore the sensitivity of the measures to signal determinism. Thereafter, application is made to two types of EEGs recorded in two epilepsy patients. Intracranial EEG shows pronounced determinism peaks during seizures. Finally, we demonstrate that ordinal patterns may be useful for improving analysis of non-invasive simultaneous EEG-fMRI.
Resumo:
BACKGROUND: Accurate projection of implanted subdural electrode contacts in presurgical evaluation of pharmacoresistant epilepsy cases by invasive EEG is highly relevant. Linear fusion of CT and MRI images may display the contacts in the wrong position due to brain shift effects. OBJECTIVE: A retrospective study in five patients with pharmacoresistant epilepsy was performed to evaluate whether an elastic image fusion algorithm can provide a more accurate projection of the electrode contacts on the pre-implantation MRI as compared to linear fusion. METHODS: An automated elastic image fusion algorithm (AEF), a guided elastic image fusion algorithm (GEF), and a standard linear fusion algorithm (LF) were used on preoperative MRI and post-implantation CT scans. Vertical correction of virtual contact positions, total virtual contact shift, corrections of midline shift and brain shifts due to pneumencephalus were measured. RESULTS: Both AEF and GEF worked well with all 5 cases. An average midline shift of 1.7mm (SD 1.25) was corrected to 0.4mm (SD 0.8) after AEF and to 0.0mm (SD 0) after GEF. Median virtual distances between contacts and cortical surface were corrected by a significant amount, from 2.3mm after LF to 0.0mm after AEF and GEF (p<.001). Mean total relative corrections of 3.1 mm (SD 1.85) after AEF and 3.0mm (SD 1.77) after GEF were achieved. The tested version of GEF did not achieve a satisfying virtual correction of pneumencephalus. CONCLUSION: The technique provided a clear improvement in fusion of pre- and post-implantation scans, although the accuracy is difficult to evaluate.
Resumo:
The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).
Resumo:
NaV-b subunits associate with the NaV-a or pore-forming subunit of the voltage-dependent sodium channel and play critical roles in channel expression, voltage dependence of the channel gating, cell adhesion, signal transduction, and channel pharmacology. Five NaV-b subunits have been identified in humans, all of them implicated in many primary arrhythmia syndromes that cause sudden death or neurologic disorders, including long QT syndrome, Brugada syndrome, cardiac conduction disorders, idiopathic ventricular fibrillation, epilepsy, neurodegenerative diseases, and neuropsychiatric disorders.
Resumo:
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Resumo:
Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer
Resumo:
AIM The autonomic innervation of the heart consists of sympathetic and parasympathetic nerve fibres, and fibres of the intrinsic ganglionated plexus with noradrenaline and acytylcholine as principal neurotransmitters. The fibres co-release neuropeptides to modulate intracardiac neurotransmission by specific presynaptic and postsynaptic receptors. The coexpression of angiotensin II in sympathetic fibres of the human heart and its role are not known so far. METHODS Autopsy specimens of human hearts were studied (n=3; ventricles). Using immunocytological methods, cryostat sections were stained by a murine monoclonal antibody (4B3) directed against angiotensin II and co-stained by polyclonal antibodies against tyrosine hydroxylase, a catecholaminergic marker. Visualisation of the antibodies was by confocal light microscopy or laser scanning microscopy. RESULTS Angiotensin II-positive autonomic fibres with and without a catecholaminergic cophenotype (hydroxylase-positive) were found in all parts of the human ventricles. In the epicardium, the fibres were grouped in larger bundles of up to 100 and more fibres. They followed the preformed anatomic septa and epicardial vessels towards the myocardium and endocardium where the bundles dissolved and the individual fibres spread between myocytes and within the endocardium. Generally, angiotensinergic fibres showed no synaptic enlargements or only a few if they were also catecholaminergic. The exclusively catechalominergic fibres were characterised by multiple beaded synapses. CONCLUSION The autonomic innervation of the human heart contains angiotensinergic fibres with a sympathetic efferent phenotype and exclusively angiotensinergic fibers representing probably afferents. Angiotensinergic neurotransmission may modulate intracardiac sympathetic and parasympathetic activity and thereby influence cardiac and circulatory function.
Resumo:
Purpose To investigate whether nonhemodynamic resonant saturation effects can be detected in patients with focal epilepsy by using a phase-cycled stimulus-induced rotary saturation (PC-SIRS) approach with spin-lock (SL) preparation and whether they colocalize with the seizure onset zone and surface interictal epileptiform discharges (IED). Materials and Methods The study was approved by the local ethics committee, and all subjects gave written informed consent. Eight patients with focal epilepsy undergoing presurgical surface and intracranial electroencephalography (EEG) underwent magnetic resonance (MR) imaging at 3 T with a whole-brain PC-SIRS imaging sequence with alternating SL-on and SL-off and two-dimensional echo-planar readout. The power of the SL radiofrequency pulse was set to 120 Hz to sensitize the sequence to high gamma oscillations present in epileptogenic tissue. Phase cycling was applied to capture distributed current orientations. Voxel-wise subtraction of SL-off from SL-on images enabled the separation of T2* effects from rotary saturation effects. The topography of PC-SIRS effects was compared with the seizure onset zone at intracranial EEG and with surface IED-related potentials. Bayesian statistics were used to test whether prior PC-SIRS information could improve IED source reconstruction. Results Nonhemodynamic resonant saturation effects ipsilateral to the seizure onset zone were detected in six of eight patients (concordance rate, 0.75; 95% confidence interval: 0.40, 0.94) by means of the PC-SIRS technique. They were concordant with IED surface negativity in seven of eight patients (0.88; 95% confidence interval: 0.51, 1.00). Including PC-SIRS as prior information improved the evidence of the standard EEG source models compared with the use of uninformed reconstructions (exceedance probability, 0.77 vs 0.12; Wilcoxon test of model evidence, P < .05). Nonhemodynamic resonant saturation effects resolved in patients with favorable postsurgical outcomes, but persisted in patients with postsurgical seizure recurrence. Conclusion Nonhemodynamic resonant saturation effects are detectable during interictal periods with the PC-SIRS approach in patients with epilepsy. The method may be useful for MR imaging-based detection of neuronal currents in a clinical environment. (©) RSNA, 2016 Online supplemental material is available for this article.
Resumo:
The syndrome known as nocturnal frontal lobe epilepsy is recognized worldwide and has been studied in a wide range of clinical and scientific settings (epilepsy, sleep medicine, neurosurgery, pediatric neurology, epidemiology, genetics). Though uncommon, it is of considerable interest to practicing neurologists because of complexity in differential diagnosis from more common, benign sleep disorders such as parasomnias, or other disorders like psychogenic nonepileptic seizures. Moreover, misdiagnosis can have substantial adverse consequences on patients' lives. At present, there is no consensus definition of this disorder and disagreement persists about its core electroclinical features and the spectrum of etiologies involved. To improve the definition of the disorder and establish diagnostic criteria with levels of certainty, a consensus conference using formal recommended methodology was held in Bologna in September 2014. It was recommended that the name be changed to sleep-related hypermotor epilepsy (SHE), reflecting evidence that the attacks are associated with sleep rather than time of day, the seizures may arise from extrafrontal sites, and the motor aspects of the seizures are characteristic. The etiology may be genetic or due to structural pathology, but in most cases remains unknown. Diagnostic criteria were developed with 3 levels of certainty: witnessed (possible) SHE, video-documented (clinical) SHE, and video-EEG-documented (confirmed) SHE. The main research gaps involve epidemiology, pathophysiology, treatment, and prognosis.
Resumo:
OBJECTIVE To investigate effects of interictal epileptic activity (IEA) and antiepileptic drugs (AEDs) on reactivity and aspects of the fitness to drive for epilepsy patients. METHODS Forty-six adult patients with demonstration of focal or generalized bursts of IEA in electroencephalography (EEG) readings within 1 year prior to inclusion irrespective of medication performed a car driving computer test or a single light flash test (39 patients performed both). Reaction times (RTs), virtual crashes, or lapses (RT ≥ 1 s in the car or flash test) were measured in an IEA burst-triggered fashion during IEA and compared with RT-measurements during unremarkable EEG findings in the same session. RESULTS IEA prolonged RTs both in the flash and car test (p < 0.001) in individual patients up to 200 ms. Generalized IEA with spike/waves (s/w) had the largest effect on RT prolongation (p < 0.001, both tests), whereas mean RT during normal EEG, age, gender, and number of AEDs had no effect. The car test was better than the flash test in detecting RT prolongations (p = 0.030). IEA increased crashes/lapses >26% in sessions with generalized IEA with s/w. The frequency of IEA-associated RT >1 s exceeded predictions (p < 0.001) based on simple RT shift, suggesting functional impairment beyond progressive RT prolongation by IEA. The number of AEDs correlated with prolonged RTs during normal EEG (p < 0.021) but not with IEA-associated RT prolongation or crashes/lapses. SIGNIFICANCE IEA prolonged RTs to varying extents, dependent on IEA type. IEA-associated RTs >1 s were more frequent than predicted, suggesting beginning cerebral decompensation of visual stimulus processing. AEDs somewhat reduced psychomotor speed, but it was mainly the IEA that contributed to an excess of virtual accidents.