92 resultados para Hepatic Retransplantation
Resumo:
BACKGROUND Obesity and increased visceral fat deposits are important risk factors for surgical-site infection (SSI). Interestingly, a potential role of hepatic steatosis on complications after extrahepatic surgery remains unknown. The aim of the present study was to investigate the impact of hepatic steatosis on SSI in patients that underwent open abdominal surgery. METHODS A total of 231 patients that underwent either liver (n = 116) or colorectal (n = 115) resection and received preoperative contrast-enhanced computed tomography scans were retrospectively investigated. Signal attenuation of the liver parenchyma was measured on computed tomography scans to assess hepatic steatosis. RESULTS More SSIs (including types 1, 2, and 3) were found in the group with hepatic steatosis (56/118 [47.5%]) compared with the control group (30/113 [26.6%]; P = .001). Patients with hepatic steatosis showed greater median body mass index than patients without hepatic steatosis (26.6 kg/m(2) [range 16.8-47.0 kg/m(2)] vs 23.2 kg/m(2) [15.9-32.7 kg/m(2)]; P < .001). Patients with hepatic steatosis experienced longer median operation times (297 minutes [52-708 minutes] vs 240 minutes [80-600 minutes]; P = .003). In a multivariate analysis, hepatic steatosis was identified as an independent risk factor for SSI in patients undergoing hepatic (odds ratio 10.33 [95% confidence interval 1.19-89.76]; P = .03) or colorectal (odds ratio 6.67 [95% confidence interval 1.12-39.33]; P = .04) operation. CONCLUSION Hepatic steatosis is associated with SSI after hepatic and colorectal operation.
Support of hepatic regeneration by trophic factors from liver-derived mesenchymal stromal/stem cells
Resumo:
Mesenchymal stromal/stem cells (MSCs) have multilineage differentiation potential and as such are known to promote regeneration in response to tissue injury. However, accumulating evidence indicates that the regenerative capacity of MSCs is not via transdifferentiation but mediated by their production of trophic and other factors that promote endogenous regeneration pathways of the tissue cells. In this chapter, we provide a detailed description on how to obtain trophic factors secreted by cultured MSCs and how they can be used in small animal models. More specific, in vivo models to study the paracrine effects of MSCs on regeneration of the liver after surgical resection and/or ischemia and reperfusion injury are described.
Resumo:
BACKGROUND: Ischemia-reperfusion injury (IRI) significantly contributes to graft dysfunction after liver transplantation. Natural killer (NK) cells are crucial innate effector cells in the liver and express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent inducer of hepatocyte cell death. Here, we investigated if TRAIL expression on NK cells contributes to hepatic IRI. METHODS: The outcome after partial hepatic IRI was assessed in TRAIL-null mice and contrasted to C57BL/6J wild-type mice and after NK cell adoptive transfer in RAG2/common gamma-null mice that lack T, B, and NK cells. Liver IRI was assessed by histological analysis, alanine aminotransferase, hepatic neutrophil activation by myeloperoxidase activity, and cytokine secretion at specific time points. NK cell cytotoxicity and differentiation were assessed in vivo and in vitro. RESULTS: Twenty-four hours after reperfusion, TRAIL-null mice exhibited significantly higher serum transaminases, histological signs of necrosis, neutrophil infiltration, and serum levels of interleukin-6 compared to wild-type animals. Adoptive transfer of TRAIL-null NK cells into immunodeficient RAG2/common gamma-null mice was associated with significantly elevated liver damage compared to transfer of wild-type NK cells. In TRAIL-null mice, NK cells exhibit higher cytotoxicity and decreased differentiation compared to wild-type mice. In vitro, cytotoxicity against YAC-1 and secretion of interferon gamma by TRAIL-null NK cells were significantly increased compared to wild-type controls. CONCLUSIONS: These experiments reveal that expression of TRAIL on NK cells is protective in a murine model of hepatic IRI through modulation of NK cell cytotoxicity and NK cell differentiation.
Resumo:
Neonatal energy metabolism in calves has to adapt to extrauterine life and depends on colostrum feeding. The adrenergic and glucocorticoid systems are involved in postnatal maturation of pathways related to energy metabolism and calves show elevated plasma concentrations of cortisol and catecholamines during perinatal life. We tested the hypothesis that hepatic glucocorticoid receptors (GR) and α₁- and β₂-adrenergic receptors (AR) in neonatal calves are involved in adaptation of postnatal energy metabolism and that respective binding capacities depend on colostrum feeding. Calves were fed colostrum (CF; n=7) or a milk-based formula (FF; n=7) with similar nutrient content up to d 4 of life. Blood samples were taken daily before feeding and 2h after feeding on d 4 of life to measure metabolites and hormones related to energy metabolism in blood plasma. Liver tissue was obtained 2 h after feeding on d 4 to measure hepatic fat content and binding capacity of AR and GR. Maximal binding capacity and binding affinity were calculated by saturation binding assays using [(3)H]-prazosin and [(3)H]-CGP-12177 for determination of α₁- and β₂-AR and [(3)H]-dexamethasone for determination of GR in liver. Additional liver samples were taken to measure mRNA abundance of AR and GR, and of key enzymes related to hepatic glucose and lipid metabolism. Plasma concentrations of albumin, triacylglycerides, insulin-like growth factor I, leptin, and thyroid hormones changed until d 4 and all these variables except leptin and thyroid hormones responded to feed intake on d 4. Diet effects were determined for albumin, insulin-like growth factor I, leptin, and thyroid hormones. Binding capacity for GR was greater and for α₁-AR tended to be greater in CF than in FF calves. Binding affinities were in the same range for each receptor type. Gene expression of α₁-AR (ADRA1) tended to be lower in CF than FF calves. Binding capacity of GR was related to parameters of glucose and lipid metabolism, whereas β₂-AR binding capacity was negatively associated with glucose metabolism. In conclusion, our results indicate a dependence of GR and α₁-AR on milk feeding immediately after birth and point to an involvement of hepatic GR and AR in postnatal adaptation of glucose and lipid metabolism in calves.
Resumo:
The aim was to study the variation in metabolic responses in early-lactating dairy cows (n = 232) on-farm that were pre-selected for a high milk fat content (>45 g/l) and a high fat/protein ratio in milk (>1.5) in their previous lactation. Blood was assayed for concentrations of metabolites and hormones. Liver was measured for mRNA abundance of 25 candidate genes encoding enzymes and receptors involved in gluconeogenesis (6), fatty acid β-oxidation (6), fatty acid and triglyceride synthesis (5), cholesterol synthesis (4), ketogenesis (2) and the urea cycle (2). Two groups of cows were formed based on the plasma concentrations of glucose, non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) (GRP+, high metabolic load; glucose <3.0 mm, NEFA >300 μm and BHBA >1.0 mm, n = 30; GRP-, low metabolic load; glucose >3.0 mm, NEFA <300 μm and BHBA <1.0 mm, n = 30). No differences were found between GRP+ and GRP- for the milk yield at 3 weeks post-partum, but milk fat content was higher (p < 0.01) for GRP+ than for GRP-. In week 8 post-partum, milk yield was higher in GRP+ in relation to GRP- (37.5 vs. 32.5 kg/d; p < 0.01). GRP+ in relation to GRP- had higher (p < 0.001) NEFA and BHBA and lower glucose, insulin, IGF-I, T3 , T4 concentrations (p < 0.01). The mRNA abundance of genes related to gluconeogenesis, fatty acid β-oxidation, fatty acid and triglyceride synthesis, cholesterol synthesis and the urea cycle was different in GRP+ compared to GRP- (p < 0.05), although gene transcripts related to ketogenesis were similar between GRP+ and GRP-. In conclusion, high metabolic load post-partum in dairy cows on-farm corresponds to differences in the liver in relation to dairy cows with low metabolic load, even though all cows were pre-selected for a high milk fat content and fat/protein ratio in milk in their previous lactation.
Resumo:
The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.
Resumo:
BACKGROUND & AIMS Pegylated interferon is still the backbone of hepatitis C treatment and may cause thrombocytopenia, leading to dose reductions, early discontinuation, and eventually worse clinical outcome. We assessed associations between interferon-induced thrombocytopenia and bleeding complications, interferon dose reductions, early treatment discontinuation, as well as SVR and long-term clinical outcome. METHODS All consecutive patients with chronic HCV infection and biopsy-proven advanced hepatic fibrosis (Ishak 4-6) who initiated interferon-based therapy between 1990 and 2003 in 5 large hepatology units in Europe and Canada were included. RESULTS Overall, 859 treatments were administered to 546 patients. Baseline platelets (in 10(9)/L) were normal (⩾150) in 394 (46%) treatments; thrombocytopenia was moderate (75-149) in 324 (38%) and severe (<75) in 53 (6%) treatments. Thrombocytopenia-induced interferon dose reductions occurred in 3 (1%); 46 (16%), and 15 (30%) treatments respectively (p<0.001); interferon was discontinued due to thrombocytopenia in 1 (<1%), 8 (3%), and in 8 (16%) treatments respectively (p<0.001). In total, 104 bleeding events were reported during 53 treatments. Only two severe bleeding complications occurred. Multivariate analysis showed that cirrhosis and a platelet count below 50 were associated with on-treatment bleeding. Within thrombocytopenic patients, patients attaining SVR had a lower occurrence of liver failure (p<0.001), hepatocellular carcinoma (p<0.001), liver related death or liver transplantation (p<0.001), and all-cause mortality (p=0.001) compared to patients without SVR. CONCLUSIONS Even in thrombocytopenic patients with chronic HCV infection and advanced hepatic fibrosis, on-treatment bleedings are generally mild. SVR was associated with a marked reduction in cirrhosis-related morbidity and mortality, especially in patients with baseline thrombocytopenia.
Resumo:
OBJECTIVE Reliable tools to predict long-term outcome among patients with well compensated advanced liver disease due to chronic HCV infection are lacking. DESIGN Risk scores for mortality and for cirrhosis-related complications were constructed with Cox regression analysis in a derivation cohort and evaluated in a validation cohort, both including patients with chronic HCV infection and advanced fibrosis. RESULTS In the derivation cohort, 100/405 patients died during a median 8.1 (IQR 5.7-11.1) years of follow-up. Multivariate Cox analyses showed age (HR=1.06, 95% CI 1.04 to 1.09, p<0.001), male sex (HR=1.91, 95% CI 1.10 to 3.29, p=0.021), platelet count (HR=0.91, 95% CI 0.87 to 0.95, p<0.001) and log10 aspartate aminotransferase/alanine aminotransferase ratio (HR=1.30, 95% CI 1.12 to 1.51, p=0.001) were independently associated with mortality (C statistic=0.78, 95% CI 0.72 to 0.83). In the validation cohort, 58/296 patients with cirrhosis died during a median of 6.6 (IQR 4.4-9.0) years. Among patients with estimated 5-year mortality risks <5%, 5-10% and >10%, the observed 5-year mortality rates in the derivation cohort and validation cohort were 0.9% (95% CI 0.0 to 2.7) and 2.6% (95% CI 0.0 to 6.1), 8.1% (95% CI 1.8 to 14.4) and 8.0% (95% CI 1.3 to 14.7), 21.8% (95% CI 13.2 to 30.4) and 20.9% (95% CI 13.6 to 28.1), respectively (C statistic in validation cohort = 0.76, 95% CI 0.69 to 0.83). The risk score for cirrhosis-related complications also incorporated HCV genotype (C statistic = 0.80, 95% CI 0.76 to 0.83 in the derivation cohort; and 0.74, 95% CI 0.68 to 0.79 in the validation cohort). CONCLUSIONS Prognosis of patients with chronic HCV infection and compensated advanced liver disease can be accurately assessed with risk scores including readily available objective clinical parameters.
Resumo:
Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition, strongly associated with the metabolic syndrome, that can lead to progressive hepatic fibrosis, cirrhosis and hepatic failure. Subtle inter-patient genetic variation and environmental factors combine to determine variation in disease progression. A common non-synonymous polymorphism in TM6SF2 (rs58542926 c.449 C>T, p.Glu167Lys) was recently associated with increased hepatic triglyceride content, but whether this variant promotes clinically relevant hepatic fibrosis is unknown. Here we confirm that TM6SF2 minor allele carriage is associated with NAFLD and is causally related to a previously reported chromosome 19 GWAS signal that was ascribed to the gene NCAN. Furthermore, using two histologically characterized cohorts encompassing steatosis, steatohepatitis, fibrosis and cirrhosis (combined n=1,074), we demonstrate a new association, independent of potential confounding factors (age, BMI, type 2 diabetes mellitus and PNPLA3 rs738409 genotype), with advanced hepatic fibrosis/cirrhosis. These findings establish new and important clinical relevance to TM6SF2 in NAFLD.
Resumo:
BACKGROUND & AIMS Pegylated interferon-based treatment is still the backbone of current hepatitis C therapy and is associated with bone marrow suppression and an increased risk of infections. The aim of this retrospective cohort study was to assess the risk of infections during interferon-based treatment among patients with chronic HCV infection and advanced hepatic fibrosis and its relation to treatment-induced neutropenia. METHODS This cohort study included all consecutive patients with chronic HCV infection and biopsy-proven bridging fibrosis or cirrhosis (Ishak 4-6) who started treatment between 1990 and 2003 in five large hepatology units in Europe and Canada. Neutrophil counts between 500/μL-749/μL and below 500/μL were considered as moderate and severe neutropenia, respectively. RESULTS This study included 723 interferon-based treatments, administered to 490 patients. In total, 113 infections were reported during 88 (12%) treatments, of which 24 (21%) were considered severe. Only one patient was found to have moderate neutropenia and three patients were found to have severe neutropenia at the visit before the infection. Three hundred and twelve (99.7%) visits with moderate neutropenia and 44 (93.6%) visits with severe neutropenia were not followed by an infection. Multivariable analysis showed that cirrhosis (OR 2.85, 95%CI 1.38-5.90, p=0.005) and severe neutropenia at the previous visit (OR 5.42, 95%CI 1.34-22.0, p=0.018) were associated with the occurrence of infection, while moderate neutropenia was not. Among a subgroup of patients treated with PegIFN, severe neutropenia was not significantly associated (OR 1.63, 95%CI 0.19-14.2, p=0.660). CONCLUSIONS In this large cohort of patients with bridging fibrosis and cirrhosis, infections during interferon-based therapy were generally mild. Severe interferon-induced neutropenia rarely occurred, but was associated with on-treatment infection. Moderate neutropenia was not associated with infection, suggesting that current dose reduction guidelines might be too strict.
Resumo:
The endocannabinoid (EC) system is implicated in many chronic liver diseases, including hepatitis C viral (HCV) infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC), however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH) and monoaclyglycerol lipase (MAGL) activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC), ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC) co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects.
Resumo:
BACKGROUND & AIMS The landscape of HCV treatments is changing dramatically. At the beginning of this new era, we highlight the challenges for HCV-therapy by assessing the long-term epidemiological trends in treatment uptake, efficacy and mortality among HIV/HCV-coinfected people since the availability of HCV therapy. METHODS We included all SHCS participants with detectable HCV RNA between 2001 and 2013. To identify predictors for treatment uptake uni- and multivariable Poisson regression models were applied. We further used survival analyses with Kaplan-Meier curves and Cox regression with drop-out as competing risk. RESULTS Of 12,401 participants 2107 (17%) were HCV RNA positive. Of those, 636 (30%) started treatment with an incidence of 5.8/100 person years (PY) (95% CI 5.3-6.2). Sustained virological response (SVR) with pegylated interferon/ribavirin was achieved in 50% of treated patients, representing 15% of all participants with replicating HCV infection. 344 of 2107 (16%) HCV RNA positive persons died, 59% from extrahepatic causes. Mortality/100 PY was 2.9 (95% CI 2.6-3.2) in untreated patients, 1.3 (1.0-1.8) in those treated with failure, and 0.6 (0.4-1.0) in patients with SVR. In 2013, 869/2107 (41%) participants remained HCV RNA positive. CONCLUSIONS Over the last 13 years HCV treatment uptake was low and by the end of 2013, a large number of persons remain to be treated. Mortality was high, particularly in untreated patients, and mainly due to non-liver related causes. Accordingly, in HIV/HCV-coinfected patients, integrative care including the diagnosis and therapy of somatic and psychiatric disorders is important to achieve mortality rates similar to HIV-monoinfected patients.
Resumo:
BACKGROUND To cover the shortage of cadaveric organs, new approaches to expand the donor pool are needed. Here we report on a case of domino liver transplantation (DLT) using an organ harvested from a compound heterozygous patient with primary hyperoxaluria (PHO), who underwent combined liver and kidney transplantation. The DLT recipient developed early renal failure with oxaluria. The time to the progression to oxalosis with renal failure in such situations is unknown, but, based on animal data, we hypothesize that calcineurin inhibitors may play a detrimental role. METHODS A cadaveric liver and kidney transplantation was performed in a 52-year-old male with PHO. His liver was used for a 64-year-old patient with a non-resectable, but limited cholangiocarcinoma. RESULTS While the course of the PHO donor was uneventful, in the DLT recipient early post-operative, dialysis-dependent renal failure with hyperoxaluria developed. Histology of a kidney biopsy revealed massive calcium oxalate crystal deposition as the leading aetiological cause. CONCLUSIONS DLT using PHO organs for marginal recipients represents a possible therapeutic approach regarding graft function of the liver. However, it may negatively alter the renal outcome of the recipient in an unpredictable manner, especially with concomitant use of cyclosporin. Therefore, we suggest that, although DLT should be promoted, PHO organs are better excluded from such procedures.
Resumo:
Glycogen levels in liver and skeletal muscle assessed non-invasively using magnetic resonance spectroscopy after a 48-h pre-study period including a standardized diet and withdrawal from exercise did not differ between individuals with well-controlled Type 1 DM and matched healthy controls.
Resumo:
PURPOSE Surgical cytoreduction remains a cornerstone in the management of patients with advanced and recurrent epithelial ovarian cancer. Parenchymal liver metastases determine stage VI disease and are commonly considered a major limit in the achievement of an optimal cytoreduction. The purpose of this manuscript was to discuss the rationale of liver resection and the morbidity related to this procedure in advanced and recurrent ovarian cancer. METHODS A search of the National Library of Medicine's MEDLINE/PubMed database until March 2015 was performed using the keywords: "ovarian cancer," "hepatic," "liver," and "metastases." RESULTS In patients with liver metastases, hepatic resection is associated with a similar prognosis as stage IIIC patients. The length of the disease-free interval between primary diagnosis and occurrence of liver metastases, as well as residual disease after resection, is the most important prognostic factors. In addition, the number of liver lesions, resection margins, and the gynecologic oncology group performance status seem to play also an important role in determining outcome. CONCLUSIONS In properly selected patients, liver resections at the time of cytoreduction increase rates of optimal cytoreduction and improve survival in advanced-stage and recurrent ovarian cancer patients.