82 resultados para Acceleration, Centre of mass, Gait, Kinematic, Running, Symmetry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Proper diagnosis of skin diseases relies on dermatopathology, the most important diagnostic technique in dermatology. Unfortunately, there are few dermatopathology institutions in sub-Saharan Africa, where little is known about the spectrum of histopathological features observed. OBJECTIVES To investigate the spectrum of dermatopathological diagnoses made in a sub-Saharan African reference centre of a large, mainly rural area. PATIENTS/METHODS To retrospectively evaluate all dermatopathological diagnoses made over a period of 5 years at the Regional Dermatology Training Centre (RDTC) in Moshi, Tanzania. RESULTS There were a total of 1554 skin biopsy specimens. In 45% of cases, there were inflammatory diseases, most frequently lichenoid conditions. Cutaneous neoplasms represented 30.4% of all diagnoses, with Kaposi's sarcoma (KS) and, less frequently, squamous cell carcinoma (SCC) being the two most common neoplastic conditions. The latter also reflected the intensive management of persons with albinism in the RDTC. The distribution of histological diagnoses seemed to correlate with the overall clinical spectrum of cutaneous diseases managed in the RDTC. CONCLUSIONS In this African study inflammatory conditions are the main burden of skin diseases leading to a diagnostic biopsy. Our findings provide further evidence that KS, primarily related to the high prevalence of HIV infection is an epidemiological problem. Both SCC and basal cell carcinoma represent another relatively common malignant cutaneous neoplasms, reflecting the presence of specific populations at risk. The challenging spectrum of histological diagnoses observed in this specific African setting with basic working conditions shows that development of laboratory services of good standards and specific training in dermatopathology are urgently needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a class of models with gauged U(1) R symmetry in 4D N=1 super-gravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Körs and apply their results to the special case of a U(1) R symmetry, in the presence of the Fayet-Iliopoulos term (ξ) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the “naive” field theory approach in global SUSY, in which case U(1) R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1) R charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1) R charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b K , b CK ).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A measurement of the cross section for the production of isolated prompt photons in pp collisions at a center-of-mass energy s √ =7  TeV is presented. The results are based on an integrated luminosity of 4.6  fb −1 collected with the ATLAS detector at the LHC. The cross section is measured as a function of photon pseudorapidity η γ and transverse energy E γ T in the kinematic range 100≤E γ T <1000  GeV and in the regions |η γ |<1.37 and 1.52≤|η γ |<2.37 . The results are compared to leading-order parton-shower Monte Carlo models and next-to-leading-order perturbative QCD calculations. Next-to-leading-order perturbative QCD calculations agree well with the measured cross sections as a function of E γ T and η γ .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a sample of dilepton top-quark pair (tt ¯ ) candidate events, a study is performed of the production of top-quark pairs together with heavy-flavor (HF) quarks, the sum of tt ¯ +b+X and tt ¯ +c+X , collectively referred to as tt ¯  + HF . The data set used corresponds to an integrated luminosity of 4.7  fb −1 of proton-proton collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The presence of additional HF (b or c ) quarks in the tt ¯ sample is inferred by looking for events with at least three b -tagged jets, where two are attributed to the b quarks from the tt ¯ decays and the third to additional HF production. The dominant background to tt ¯  + HF in this sample is tt ¯ +jet events in which a light-flavor jet is misidentified as a heavy-flavor jet. To determine the heavy- and light-flavor content of the additional b -tagged jets, a fit to the vertex mass distribution of b -tagged jets in the sample is performed. The result of the fit shows that 79 ± 14 (stat) ± 22 (syst) of the 105 selected extra b -tagged jets originate from HF quarks, 3 standard deviations away from the hypothesis of zero tt ¯  + HF production. The result for extra HF production is quoted as a ratio (R HF ) of the cross section for tt ¯  + HF production to the cross section for tt ¯ production with at least one additional jet. Both cross sections are measured in a fiducial kinematic region within the ATLAS acceptance. R HF is measured to be [6.2±1.1(stat)±1.8(syst)]% for jets with p T >25  GeV and |η|<2.5 , in agreement with the expectations from Monte Carlo generators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pressure–Temperature–time (P–T–t) estimates of the syn-kinematic strain at the peak-pressure conditions reached during shallow underthrusting of the Briançonnais Zone in the Alpine subduction zone was made by thermodynamic modelling and 40Ar/39Ar dating in the Plan-de-Phasy unit (SE of the Pelvoux Massif, Western Alps). The dated phengite minerals crystallized syn-kinematically in a shear zone indicating top-to-the-N motion. By combining X-ray mapping with multi-equilibrium calculations, we estimate the phengite crystallization conditions at 270 ± 50 °C and 8.1 ± 2 kbar at an age of 45.9 ± 1.1 Ma. Combining this P–T–t estimate with data from the literature allows us to constrain the timing and geometry of Alpine continental subduction. We propose that the Briançonnais units were scalped on top of the slab during ongoing continental subduction and exhumed continuously until collision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work applies higher order auxiliary excitation techniques to two types of quadrupole mass spectrometers (QMSs): commercial systems and spaceborne instruments. The operational settings of a circular rod geometry commercial system and an engineering test-bed for a hyperbolic rod geometry spaceborne instrument were matched, with the relative performance of each sensor characterized with and without applied excitation using isotopic measurements of Kr+. Each instrument was operated at the limit of the test electronics to determine the effect of auxiliary excitation on extending instrument capabilities. For the circular rod sensor, with applied excitation, a doubling of the mass resolution at 1% of peak transmission resulted from the elimination of the low-mass side peak tail typical of such rod geometries. The mass peak stability and ion rejection efficiency were also increased by factors of 2 and 10, respectively, with voltage scan lines passing through the center of stability islands formed from auxiliary excitation. Auxiliary excitation also resulted in factors of 6 and 2 in peak stability and ion rejection efficiency, respectively, for the hyperbolic rod sensor. These results not only have significant implications for the use of circular rod quadrupoles with applied excitation as a suitable replacement for traditional hyperbolic rod sensors, but also for extending the capabilities of existing hyperbolic rod QMSs for the next generation of spaceborne instruments and low-mass commercial systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We present an inversion method based on Bayesian analysis to constrain the interior structure of terrestrial exoplanets, in the form of chemical composition of the mantle and core size. Specifically, we identify what parts of the interior structure of terrestrial exoplanets can be determined from observations of mass, radius, and stellar elemental abundances. Methods. We perform a full probabilistic inverse analysis to formally account for observational and model uncertainties and obtain confidence regions of interior structure models. This enables us to characterize how model variability depends on data and associated uncertainties. Results. We test our method on terrestrial solar system planets and find that our model predictions are consistent with independent estimates. Furthermore, we apply our method to synthetic exoplanets up to 10 Earth masses and up to 1.7 Earth radii, and to exoplanet Kepler-36b. Importantly, the inversion strategy proposed here provides a framework for understanding the level of precision required to characterize the interior of exoplanets. Conclusions. Our main conclusions are (1) observations of mass and radius are sufficient to constrain core size; (2) stellar elemental abundances (Fe, Si, Mg) are principal constraints to reduce degeneracy in interior structure models and to constrain mantle composition; (3) the inherent degeneracy in determining interior structure from mass and radius observations does not only depend on measurement accuracies, but also on the actual size and density of the exoplanet. We argue that precise observations of stellar elemental abundances are central in order to place constraints on planetary bulk composition and to reduce model degeneracy. We provide a general methodology of analyzing interior structures of exoplanets that may help to understand how interior models are distributed among star systems. The methodology we propose is sufficiently general to allow its future extension to more complex internal structures including hydrogen- and water-rich exoplanets.