111 resultados para 3-DIMENSIONAL MICROFABRICATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sonography is an important diagnostic tool to examine the gastrointestinal tract of dogs with chronic diarrhea. Two-dimensional grayscale ultrasound parameters to assess for various enteropathies primarily focus on wall thickness and layering. Mild, generalized thickening of the intestinal wall with maintenance of the wall layering is common in inflammatory bowel disease. Quantitative and semi-quantitative spectral Doppler arterial waveform analysis can be utilized for various enteropathies, including inflammatory bowel disease and food allergies. Dogs with inflammatory bowel disease have inadequate hemodynamic responses during digestion of food. Dogs with food allergies have prolonged vasodilation and lower resistive and pulsatility indices after eating allergen-inducing foods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our approaches to the use of EEG studies for the understanding of the pathogenesis of schizophrenic symptoms are presented. The basic assumptions of a heuristic and multifactorial model of the psychobiological brain mechanisms underlying the organization of normal behavior is described and used in order to formulate and test hypotheses about the pathogenesis of schizophrenic behavior using EEG measures. Results from our studies on EEG activity and EEG reactivity (= EEG components of a memory-driven, adaptive, non-unitary orienting response) as analyzed with spectral parameters and "chaotic" dimensionality (correlation dimension) are summarized. Both analysis procedures showed a deviant brain functional organization in never-treated first-episode schizophrenia which, within the framework of the model, suggests as common denominator for the pathogenesis of the symptoms a deviation of working memory, the nature of which is functional and not structural.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A CT-based method ("HipMotion") for the noninvasive three-dimensional assessment of femoroacetabular impingement (FAI) was developed, validated, and applied in a clinical pilot study. The method allows for the anatomically based calculation of hip range of motion (ROM), the exact location of the impingement zone, and the simulation of quantified surgical maneuvers for FAI. The accuracy of HipMotion was 0.7 +/- 3.1 degrees in a plastic bone setup and -5.0 +/- 5.6 degrees in a cadaver setup. Reliability and reproducibility were excellent [intraclass correlation coefficient (ICC) > 0.87] for all measures except external rotation (ICC = 0.48). The normal ROM was determined from a cohort of 150 patients and was compared to 31 consecutive hips with FAI. Patients with FAI had a significantly decreased flexion, internal rotation, and abduction in comparison to normal hips (p < 0.001). Normal hip flexion and internal rotation are generally overestimated in a number of orthopedic textbooks. HipMotion is a useful tool for further assessment of impinging hips and for appropriate planning of the necessary amount of surgical intervention, which represents the basis for future computer-assisted treatment of FAI with less invasive surgical approaches, such as hip arthroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double fenestration of the anterior communicating artery (ACoA) complex associated with an aneurysm is a very rare finding and is usually caused by ACoA duplication and the presence of a median artery of the corpus callosum (MACC). We present a patient in whom double fenestration was not associated with ACoA duplication or even with MACC, representing therefore, a previously unreported anatomic variation. A 43 year old woman experienced sudden headache and the CT scans showed subarachnoid haemorrhage (SAH). On admission, her clinical condition was consistent with Hunt and Hess grade II. Conventional digital subtraction angiography (DSA) was performed and revealed multiple intracranial aneurysms arising from both middle cerebral arteries (MCA) and from the ACoA. Three-dimensional rotational angiography (3D-RA) disclosed a double fenestration of the ACoA complex which was missed by DSA. The patient underwent a classic pterional approach in order to achieve occlusion of both left MCA and ACoA aneurysms by surgical clipping. The post-operative period was uneventful. A rare anatomical variation characterised by a double fenestration not associated with ACoA duplication or MACC is described. The DSA images missed the double fenestration which was disclosed by 3D-RA, indicating the importance of 3D-RA in the diagnosis and surgical planning of intracranial aneurysms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A would-be amide: A 1,4-disubstituted 1,2,3-triazole was used as a surrogate for a trans amide bond to create a library of 16 diastereomeric pseudotetrapeptides as beta-turn mimetics. High-resolution structural analysis indicated that these scaffolds adopt distinct, rigid, conformationally homogeneous beta-turn-like structures (see example), some of which bind somatostatin receptor subtypes selectively, and some of which show broad-spectrum activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate whether measurements performed on conventional frontal radiographs are comparable to measurements performed on three-dimensional (3D) models of human skulls derived from cone beam computed tomography (CBCT) scans and if the latter can be used in longitudinal studies. Cone beam computed tomography scans and conventional frontal cephalometric radiographs were made of 40 dry human skulls. From the CBCT scan a 3D model was constructed. Standard cephalometric software was used to identify landmarks and to calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs, and on all images, five times with a time interval of 1 wk. Intra-observer reliability was acceptable for all measurements. There was a statistically significant and clinically relevant difference between measurements performed on conventional frontal radiographs and on 3D CBCT-derived models of the same skull. There was a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements performed on 3D models constructed from CBCT scans. We therefore recommend that 3D models should not be used for longitudinal research in cases where there are only two-dimensional (2D) records from the past.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to establish and validate a three-dimensional imaging protocol for the assessment of Computed Tomography (CT) scans of abdominal aortic aneurysms in UK EVAR trials patients. Quality control and repeatability of anatomical measurements is important for the validity of any core laboratory. METHODS: Three different observers performed anatomical measurements on 50 preoperative CT scans of aortic aneurysms using the Vitrea 2 three-dimensional post-imaging software in a core laboratory setting. We assessed the accuracy of intra and inter observer repeatability of measurements, the time required for collection of measurements, 3 different levels of automation and 3 different automated criteria for measurement of neck length. RESULTS: None of the automated neck length measurements demonstrated sufficient accuracy and it was necessary to perform checking of the important automated landmarks. Good intra and limited inter observer agreement were achieved with three-dimensional assessment. Complete assessment of the aneurysm and iliacs took an average (SD) of 17.2 (4.1) minutes. CONCLUSIONS: Aortic aneurysm anatomy can be assessed reliably and quickly using three-dimensional assessment but for scans of limited quality, manual checking of important landmarks remains necessary. Using a set protocol, agreement between observers is satisfactory but not as good as within observers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

27-Channel EEG potential map series were recorded from 12 normals with closed and open eyes. Intracerebral dipole model source locations in the frequency domain were computed. Eye opening (visual input) caused centralization (convergence and elevation) of the source locations of the seven frequency bands, indicative of generalized activity; especially, there was clear anteriorization of α-2 (10.5–12 Hz) and β-2 (18.5–21 Hz) sources (α-2 also to the left). Complexity of the map series' trajectories in state space (assessed by Global Dimensional Complexity and Global OMEGA Complexity) increased significantly with eye opening, indicative of more independent, parallel, active processes. Contrary to PET and fMRI, these results suggest that brain activity is more distributed and independent during visual input than after eye closing (when it is more localized and more posterior).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. 2D polymers are attractive objects for the field of material sciences due to their exceptional properties. [1] As shown before, amphiphilic oligopyrenotides (produced via automated solid-phase synthesis) form rod–like supramolecular polymers in water. [2] These assemblies form 1D objects. [3] By applying certain changes to the design of the oligopyrenotide units the dimensionality of the formed assemblies can be influenced. Herein, we demonstrate that Py3 (see Figure 1) forms defined supramolecular assemblies under thermodynamic conditions in water. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM). The obtained results suggest that oligopyrenotides with the present type of geometry and linker length leads to formation of 2D supramolecular assemblies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To evaluate the accuracy and reproducibility of aortic annulus sizing using a multislice computed tomography (MSCT) based aortic root reconstruction tool compared with conventional imaging among patients evaluated for transcatheter aortic valve replacement (TAVR). Methods and results: Patients referred for TAVR underwent standard preprocedural assessment of aortic annulus parameters using MSCT, angiography and transoesophageal echocardiography (TEE). Three-dimensional (3-D) reconstruction of MSCT images of the aortic root was performed using 3mensio (3mensio Medical Imaging BV, Bilthoven, The Netherlands), allowing for semi-automated delineation of the annular plane and assessment of annulus perimeter, area, maximum, minimum and virtual diameters derived from area and perimeter (aVD and pVD). A total of 177 patients were enrolled. We observed a good inter-observer variability of 3-D reconstruction assessments with concordance coefficients for agreement of 0.91 (95% CI: 0.87-0.93) and 0.91 (0.88-0.94) for annulus perimeter and area assessments, respectively. 3-D derived pVD and aVD correlated very closely with a concordance coefficient of 0.97 (0.96-0.98) with a mean difference of 0.5±0.3 mm (pVD-aVD). 3-D derived pVD showed the best, but moderate concordance with diameters obtained from coronal MSCT (0.67, 0.56-0.75; 0.3±1.8 mm), and the lowest concordance with diameters obtained from TEE (0.42, 0.31-0.52; 1.9±1.9 mm). Conclusions: MSCT-based 3-D reconstruction of the aortic annulus using the 3mensio software enables accurate and reproducible assessment of aortic annulus dimensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds Σ by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat connections, reduces the complete partition function of the non-Abelian theory on M to a 2-dimensional Abelian theory on the orbifold Σ, which is easily evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrodynamics can be consistently formulated on surfaces of arbitrary co-dimension in a background space-time, providing the effective theory describing long-wavelength perturbations of black branes. When the co-dimension is non-zero, the system acquires fluid-elastic properties and constitutes what is called a fluid brane. Applying an effective action approach, the most general form of the free energy quadratic in the extrinsic curvature and extrinsic twist potential of stationary fluid brane configurations is constructed to second order in a derivative expansion. This construction generalizes the Helfrich-Canham bending energy for fluid membranes studied in theoretical biology to the case in which the fluid is rotating. It is found that stationary fluid brane configurations are characterized by a set of 3 elastic response coefficients, 3 hydrodynamic response coefficients and 1 spin response coefficient for co-dimension greater than one. Moreover, the elastic degrees of freedom present in the system are coupled to the hydrodynamic degrees of freedom. For co-dimension-1 surfaces we find a 8 independent parameter family of stationary fluid branes. It is further shown that elastic and spin corrections to (non)-extremal brane effective actions can be accounted for by a multipole expansion of the stress-energy tensor, therefore establishing a relation between the different formalisms of Carter, Capovilla-Guven and Vasilic-Vojinovic and between gravity and the effective description of stationary fluid branes. Finally, it is shown that the Young modulus found in the literature for black branes falls into the class predicted by this approach - a relation which is then used to make a proposal for the second order effective action of stationary blackfolds and to find the corrected horizon angular velocity of thin black rings.