72 resultados para Trophic Plasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stromal/stem cells (MSCs) have multilineage differentiation potential and as such are known to promote regeneration in response to tissue injury. However, accumulating evidence indicates that the regenerative capacity of MSCs is not via transdifferentiation but mediated by their production of trophic and other factors that promote endogenous regeneration pathways of the tissue cells. In this chapter, we provide a detailed description on how to obtain trophic factors secreted by cultured MSCs and how they can be used in small animal models. More specific, in vivo models to study the paracrine effects of MSCs on regeneration of the liver after surgical resection and/or ischemia and reperfusion injury are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenotypic differences among closely related populations and species can cause contrasting effects on ecosystems; however, it is unknown whether such effects result from genetic divergence, phenotypic plasticity, or both. To test this, we reared sympatric limnetic and benthic species of whitefish from a young adaptive radiation in a common garden, where the benthic species was raised on two distinct food types. We then used these fish in a mesocosm experiment to test for contrasting ecosystem effects of closely related species and of plastically induced differences within a species. We found that strong contrasting ecosystem effects resulted more frequently from genetic divergence, although they were not stronger overall than those resulting from phenotypic plasticity. Overall, our results provide evidence that genetically based differences among closely related species that evolved during a young adaptive radiation can affect ecosystems, and that phenotypic plasticity can modify the ecosystem effects of such species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of contemporary ecotype formation through adaptive divergence of populations within the range of an invasive species typically requires standing genetic variation but can be facilitated by phenotypic plasticity. The relative contributions of both of these to adaptive trait differentiation have rarely been simultaneously quantified in recently diverging vertebrate populations. Here we study a case of intraspecific divergence into distinct lake and stream ecotypes of threespine stickleback that evolved in the past 140 years within the invasive range in Switzerland. Using a controlled laboratory experiment with full-sib crosses and treatments mimicking a key feature of ecotypic niche divergence, we test if the phenotypic divergence that we observe in the wild results from phenotypic plasticity or divergent genetic predisposition. Our experimental groups show qualitatively similar phenotypic divergence as those observed among wild adults. The relative contribution of plasticity and divergent genetic predisposition differs among the traits studied, with traits related to the biomechanics of feeding showing a stronger genetic predisposition, whereas traits related to locomotion are mainly plastic. These results implicate that phenotypic plasticity and standing genetic variation interacted during contemporary ecotype formation in this case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabecular bone is a porous mineralized tissue playing a major load bearing role in the human body. Prediction of age-related and disease-related fractures and the behavior of bone implant systems needs a thorough understanding of its structure-mechanical property relationships, which can be obtained using microcomputed tomography-based finite element modeling. In this study, a nonlinear model for trabecular bone as a cohesive-frictional material was implemented in a large-scale computational framework and validated by comparison of μFE simulations with experimental tests in uniaxial tension and compression. A good correspondence of stiffness and yield points between simulations and experiments was found for a wide range of bone volume fraction and degree of anisotropy in both tension and compression using a non-calibrated, average set of material parameters. These results demonstrate the ability of the model to capture the effects leading to failure of bone for three anatomical sites and several donors, which may be used to determine the apparent behavior of trabecular bone and its evolution with age, disease, and treatment in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION The knowledge about adaptive mechanisms of monochorionic placentas to fulfill the demands of two instead of one fetus is largely speculative. The aim of our study was to investigate the impact of chorionicity on birth weight and placental weight in twin pregnancies. METHODS Forty Monochorionic (MC) and 43 dichorionic (DC) twin pregnancies were included in this retrospective study. Individual and total (sum of both twins) birth weights, placental weights ratios between placental and birth weights and observed-to-expected (O/E)-ratios were calculated and analyzed. Additionally, we investigated whether in twin pregnancies placental and birth weights follow the law of allometric metabolic scaling. RESULTS MC pregnancies showed higher placental O/E-ratios than DC ones (2.25 ± 0.85 versus 1.66 ± 0.61; p < 0.05), whereas the total neonatal birth weight O/E-ratios were not different. In DC twins total placental weights correlated significantly with gestational age (r = 0.74, p < 0.001), but not in MC twins. Analysis of deliveries ≤32 weeks revealed that the placenta to birth weight ratio in MC twins was higher than in matched DC twins (0.49 ± 0.3 versus 0.24 ± 0.03; p = 0.03). Allometric metabolic scaling revealed that dichorionic twin placentas scale with birth weight, while the monochorionic ones do not. DISCUSSION The weight of MC placentas compared to that of DC is not gestational age dependent in the third trimester. Therefore an early accelerated placental growth pattern has to be postulated which leads to an excess placental mass particularly below 32 weeks of gestation. The monochorionic twins do not follow allometric metabolic scaling principle making them more vulnerable to placental compromise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erratum to: Acta Neuropathol (2012) 123:273–284. DOI 10.1007/s00401‑011‑0914‑z. The authors would like to correct Fig. 3 of the original manuscript, since the image in Fig. 3b does not correspond to a VEGF treated animal. Corrected Fig. 3 is shown below. We apologize for this mistake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic diversity in plant populations has been shown to affect the species diversity of insects. In grasses, infection with fungal endophytes can also have strong effects on insects, potentially modifying the effects of plant genetic diversity. We manipulated the genetic diversity and endophyte infection of a grass in a field experiment. We show that diversity of primary parasitoids (3rd trophic level) and, especially, secondary parasitoids (4th trophic level) increases with grass genetic diversity while there was no effect of endophyte infection. The increase in insect diversity appeared to be due to a complementarity effect rather than a sampling effect. The higher parasitoid diversity could not be explained by a cascading diversity effect because herbivore diversity was not affected and the same herbivore species were present in all treatments. The effects on the higher trophic levels must therefore be due to a direct response to plant traits or mediated by effects on traits at intermediate trophic levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim The usual hypothesis about the relationship between niche breadth and range size posits that species with the capacity to use a wider range of resources or to tolerate a greater range of environmental conditions should be more widespread. In plants, broader niches are often hypothesized to be due to pronounced phenotypic plasticity, and more plastic species are therefore predicted to be more common. We examined the relationship between the magnitude of phenotypic plasticity in five functional traits, mainly related to leaves, and several measures of abundance in 105 Central European grassland species. We further tested whether mean values of traits, rather than their plasticity, better explain the commonness of species, possibly because they are pre-adapted to exploiting the most common resources. Location Central Europe. Methods In a multispecies experiment with 105 species we measured leaf thickness, leaf greenness, specific leaf area, leaf dry matter content and plant height, and the plasticity of these traits in response to fertilization, waterlogging and shading. For the same species we also obtained five measures of commonness, ranging from plot-level abundance to range size in Europe. We then examined whether these measures of commonness were associated with the magnitude of phenotypic plasticity, expressed as composite plasticity of all traits across the experimental treatments. We further estimated the relative importance of trait plasticity and trait means for abundance and geographical range size. Results More abundant species were less plastic. This negative relationship was fairly consistent across several spatial scales of commonness, but it was weak. Indeed, compared with trait means, plasticity was relatively unimportant for explaining differences in species commonness. Main conclusions Our results do not indicate that larger phenotypic plasticity of leaf morphological traits enhances species abundance. Furthermore, possession of a particular trait value, rather than of trait plasticity, is a more important determinant of species commonness.