94 resultados para Total Hip Prosthesis
Resumo:
Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.
Resumo:
This paper addresses the problem of estimating postoperative cup alignment from single standard X-ray radiograph with gonadal shielding. The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior radiograph is known inaccurate, largely due to the wide variability in individual pelvic position relative to X-ray plate. 2D-3D image registration methods have been introduced to estimate the rigid transformation between a preoperative CT volume and postoperative radiograph(s) for an accurate estimation of the postoperative cup alignment relative to an anatomical reference extracted from the CT data. However, these methods require either multiple radiographs or a radiograph-specific calibration, both of which are not avaiable for most retrospective studies. Furthermore, these methods were only evaluated on X-ray radiograph(s) without gonadal shielding. In this paper, we propose to use a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration to estimate the rigid transfromation for a precise estimation of cup alignment. Quantitative and qualitative results evaluated on clinical and cadaveric datasets are given which indicate the validity of our approach.
Resumo:
Despite different operative and non-operative treatment regimens, the outcome after femoral head fractures has changed little over the past decades. The initial trauma itself as well as secondary changes such as posttraumatic osteoarthritis, avascular necrosis or heterotopic ossification is often responsible for severe loss of function of the afflicted hip joint. Anatomic reduction of all fracture fragments seems to be a major influencing factor in determining the outcome quality. Eight years ago we inaugurated a new surgical approach for better access and visualisation for the treatment of femoral head fractures, using the "trochanteric flip" (digastric) osteotomy. Thus inspection of the entire hip joint and accurate fragment reduction under direct visual control are possible. After good initial experiences with this operative procedure we changed our standard treatment regimen to this approach in an attempt to achieve the most accurate anatomic reduction of the femoral head in every affected patient. Between 1998 and 2006 we operated on 12 patients with femoral head fractures associated with posterior hip dislocation, using the new surgical approach. Patients were followed for 2-96 months and outcome was documented with the Merle d'Aubigne and Postel score as well as the Thompson and Epstein score. The posttraumatic formation of heterotopic bone was documented with the Brooker score. Retrospective analysis of these 12 patients showed good or excellent results in 10 patients (83.3%). The two patients with poor outcome developed an avascular necrosis of the femoral head and underwent total hip arthroplasty. Periarticular heterotopic ossification was seen in five patients. In four patients this caused a significantly reduced range of motion and was therefore considered as a posttraumatic complication. The two patients with the most severe heterotopic bone formation (Brooker III and IV) had initially sustained multiple injuries including brain injury. Comparing our results with earlier published series including our own before changing the treatment protocol, the data suggest a favorable outcome in patients with trochanteric flip (digastric) osteotomy for the treatment of femoral head fractures.
Resumo:
Context: In the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly - Pivotal Fracture Trial (HORIZON-PFT), zoledronic acid (ZOL) 5 mg significantly reduced fracture risk. Objective: To identify factors associated with greater efficacy during ZOL 5 mg treatment. Design, Setting and Patients: Subgroup analysis (preplanned and post hoc) of a multicenter, double-blind, placebo-controlled, 36-month trial in 7765 women with postmenopausal osteoporosis. Intervention: Single infusion of ZOL 5 mg or placebo at baseline, 12 and 24 months. Main Outcome Measures: Primary endpoints: new vertebral fracture and hip fracture. Secondary endpoints: non-vertebral fracture, change in femoral neck bone mineral density (BMD). Baseline risk factor subgroups: age, BMD T-score and vertebral fracture status, total hip BMD, race, weight, geographical region, smoking, height loss, history of falls, physical activity, prior bisphosphonates, creatinine clearance, body mass index (BMI), concomitant osteoporosis medications. Results: Greater ZOL induced effects on vertebral fracture risk with younger age (treatment-by-subgroup interaction P=0.05), normal creatinine clearance (P=0.04), and BMI >/=25 kg/m(2) (P=0.02). There were no significant treatment-factor interactions for hip or non-vertebral fracture or for change in BMD. Conclusions: ZOL appeared more effective in preventing vertebral fracture in younger women, overweight/obese women and women with normal renal function. ZOL had similar effects irrespective of fracture risk factors or femoral neck BMD.
Resumo:
Our goal was to validate accuracy, consistency, and reproducibility/reliability of a new method for determining cup orientation in total hip arthroplasty (THA). This method allows matching the 3D-model from CT images or slices with the projected pelvis on an anteroposterior pelvic radiograph using a fully automated registration procedure. Cup orientation (inclination and anteversion) is calculated relative to the anterior pelvic plane, corrected for individual malposition of the pelvis during radiograph acquisition. Measurements on blinded and randomized radiographs of 80 cadaver and 327 patient hips were investigated. The method showed a mean accuracy of 0.7 +/- 1.7 degrees (-3.7 degrees to 4.0 degrees) for inclination and 1.2 +/- 2.4 degrees (-5.3 degrees to 5.6 degrees) for anteversion in the cadaver trials and 1.7 +/- 1.7 degrees (-4.6 degrees to 5.5 degrees) for inclination and 0.9 +/- 2.8 degrees (-5.2 degrees to 5.7 degrees) for anteversion in the clinical data when compared to CT-based measurements. No systematic errors in accuracy were detected with the Bland-Altman analysis. The software consistency and the reproducibility/reliability were very good. This software is an accurate, consistent, reliable, and reproducible method to measure cup orientation in THA using a sophisticated 2D/3D-matching technique. Its robust and accurate matching algorithm can be expanded to statistical models.
Resumo:
To assess the effects of long-term treatment of bone loss with alendronate in a group of paraplegic men, 55 patients were evaluated in a prospective randomized controlled open label study that was 2 years in duration comparing alendronate and calcium with calcium alone. Bone loss was stopped at all cortical and trabecular infralesional sites (distal tibial epiphysis, tibial diaphysis, total hip) with alendronate 10 mg daily.
Resumo:
The aim of this study was to explore the effect of long-term cross-sex hormonal treatment on cortical and trabecular bone mineral density and main biochemical parameters of bone metabolism in transsexuals. Twenty-four male-to-female (M-F) transsexuals and 15 female-to-male (F-M) transsexuals treated with either an antiandrogen in combination with an estrogen or parenteral testosterone were included in this cross-sectional study. BMD was measured by DXA at distal tibial diaphysis (TDIA) and epiphysis (TEPI), lumbar spine (LS), total hip (HIP) and subregions, and whole body (WB) and Z-scores determined for both the genetic and the phenotypic gender. Biochemical parameters of bone turnover, insulin-like growth factor-1 (IGF-1) and sex hormone levels were measured in all patients. M-F transsexuals were significantly older, taller and heavier than F-M transsexuals. They were treated by cross-sex hormones during a median of 12.5 years before inclusion. As compared with female age-matched controls, they showed a significantly higher median Z-score at TDIA and WB (1.7+/-1.0 and 1.8+/-1.1, P < 0.01) only. Based on the WHO definition, five (who did not comply with cross-sex hormone therapy) had osteoporosis. F-M transsexuals were treated by cross-sex hormones during a median of 7.6 years. They had significantly higher median Z-scores at TEPI, TDIA and WB compared with female age-matched controls (+0.9+/-0.2 SD, +1.0+/-0.4 SD and +1.4+/-0.3 SD, respectively, P < 0.0001 for all) and reached normal male levels except at TEPI. They had significantly higher testosterone and IGF-1 levels (p < 0.001) than M-F transsexuals. We conclude that in M-F transsexuals, BMD is preserved over a median of 12.5 years under antiandrogen and estrogen combination therapy, while in F-M transsexuals BMD is preserved or, at sites rich in cortical bone, is increased to normal male levels under a median of 7.6 years of androgen treatment in this cross sectional study. IGF-1 could play a role in the mediation of the effect of androgens on bone in F-M transsexuals.
Resumo:
The aim of this study was to determine the influence of individual factors on differences in bone mineral density (BMD) using dual X-ray absorptiometry pencil beam (PB) and fan beam (FB) modes in vivo and in vitro. PB.BMD and FB.BMD of 63 normal Caucasian females ages 21-80 yr were measured at the lumbar spine and hip. Residuals of the FB/PB regression were used to assess the impact of height, weight, adiposity index (AI) (= weight/height(3/2)), back tissue thickness, and PB.BMD, respectively, on FB/PB difference. The Hologic Anthropomorphic Spine Phantom (ASP) was measured using the PB and FB modes at two different levels to assess the impact of scanning mode and focus distance. The European Spine Phantom (ESP) prototype, a geometrically well-defined phantom with known vertebral densities, was measured using PB and FB modes and analyzed manually to determine the impact of bone density on FB/PB difference and automatically to determine the impact of edge detection on FB/PB difference. Population BMD results were perfectly correlated, but significantly overestimated by 1.5% at the lumbar spine and underestimated by 0.7% at the neck, 1.8% at the trochanter, and 2.0% at the total hip, respectively, when using the FB compared with PB mode. At the lumbar spine, the FB/PB residual correlated negatively with height (r = 0.34, p < 0.01) and PB.BMD (r = 0.48, p <: 0. 0001) and positively with AI (r = 0.26, p < 0.05). At the hip, residual of trochanter correlated positively with weight (r = 0.36, p < 0.01) and AI (r = 0.36, p < 0.01). The FB mode significantly increased ASP BMD by 0.7% compared with PB. Using the FB mode, increasing focus distance significantly (p < 0.001) decreased area and bone mineral content, but not BMD. By contrast, increasing focus distance significantly decreased PB.BMD by 0.7%. With the ESP, the PB mode supplied accurate projected are of the bone (AREA) results but significant underestimation of specified BMD in the manual analysis. The FB mode significantly underestimated PB. AREA by 2.9% but fitted specified BMD quite well. FB/PB overestimation was larger for the low-density (+8.7%) than for the high-density vertebra (+4. 9%). The automated analysis resulted in more than 14% underestimation of PB. AREA (low-density vertebra) and an almost 13% overestimation of PB.BMD (high-density vertebra) using FB. In conclusion, FB and PB measurements are highly correlated at the lumbar spine and hip with small but significant BMD differences related to height, adiposity, and BMD. In clinical practice, it can be erroneous to switch from one method to another, especially in women with low bone density.
Resumo:
INTRODUCTION Data concerning outcome after management of acetabular fractures by anterior approaches with focus on age and fractures associated with roof impaction, central dislocation and/or quadrilateral plate displacement are rare. METHODS Between October 2005 and April 2009 a series of 59 patients (mean age 57 years, range 13-91) with fractures involving the anterior column was treated using the modified Stoppa approach alone or for reduction of displaced iliac wing or low anterior column fractures in combination with the 1st window of the ilioinguinal approach or the modified Smith-Petersen approach, respectively. Surgical data, accuracy of reduction, clinical and radiographic outcome at mid-term and the need for endoprosthetic replacement in the postoperative course (defined as failure) were assessed; uni- and multivariate regression analysis were performed to identify independent predictive factors (e.g. age, nonanatomical reduction, acetabular roof impaction, central dislocation, quadrilateral plate displacement) for a failure. Outcome was assessed for all patients in general and in accordance to age in particular; patients were subdivided into two groups according to their age (group "<60yrs", group "≥60yrs"). RESULTS Forty-three of 59 patients (mean age 54yrs, 13-89) were available for evaluation. Of these, anatomic reduction was achieved in 72% of cases. Nonanatomical reduction was identified as being the only multivariate predictor for subsequent total hip replacement (Adjusted Hazard Ratio 23.5; p<0.01). A statistically significant higher rate of nonanatomical reduction was observed in the presence of acetabular roof impaction (p=0.01). In 16% of all patients, total hip replacement was performed and in 69% of patients with preserved hips the clinical results were excellent or good at a mean follow up of 35±10 months (range: 24-55). No statistical significant differences were observed between both groups. CONCLUSION Nonanatomical reconstruction of the articular surfaces is at risk for failure of joint-preserving management of acetabular fractures through an isolated or combined modified Stoppa approach resulting in total joint replacement at mid-term. In the elderly, joint-preserving surgery is worth considering as promising clinical and radiographic results might be obtained at mid-term.
Resumo:
Context: In virologically suppressed, antiretroviral-treated patients, the effect of switching to tenofovir (TDF) on bone biomarkers compared to patients remaining on stable antiretroviral therapy is unknown. Methods: We examined bone biomarkers (osteocalcin [OC], procollagen type 1 amino-terminal propeptide, and C-terminal cross-linking telopeptide of type 1 collagen) and bone mineral density (BMD) over 48 weeks in virologically suppressed patients (HIV RNA < 50 copies/ml) randomized to switch to TDF/emtricitabine (FTC) or remain on first-line zidovudine (AZT)/lamivudine (3TC). PTH was also measured. Between-group differences in bone biomarkers and associations between change in bone biomarkers and BMD measures were assessed by Student's t tests, Pearson correlation, and multivariable linear regression, respectively. All data are expressed as mean (SD), unless otherwise specified. Results: Of 53 subjects (aged 46.0 y; 84.9% male; 75.5% Caucasian), 29 switched to TDF/FTC. There were reductions in total hip and lumbar spine BMD in those switching to TDF/FTC (total hip, TDF/FTC, −1.73 (2.76)% vs AZT/3TC, −0.39 (2.41)%; between-group P = .07; lumbar spine, TDF/FTC, −1.50 (3.49)% vs AZT/3TC, +0.25 (2.82)%; between-group P = .06), but they did not reach statistical significance. Greater declines in lumbar spine BMD correlated with greater increases in OC (r = −0.28; P = .05). The effect of TDF/FTC on bone biomarkers remained significant when adjusted for baseline biomarker levels, gender, and ethnicity. There was no difference in change in PTH levels over 48 weeks between treatment groups (between-group P = .23). All biomarkers increased significantly from weeks 0 to 48 in the switch group, with no significant change in those remaining on AZT/3TC (between-group, all biomarkers, P < .0001). Conclusion: A switch to TDF/FTC compared to remaining on a stable regimen is associated with increases in bone turnover that correlate with reductions in BMD, suggesting that TDF exposure directly affects bone metabolism in vivo.
Resumo:
High-resolution quantitative computed tomography (HRQCT)-based analysis of spinal bone density and microstructure, finite element analysis (FEA), and DXA were used to investigate the vertebral bone status of men with glucocorticoid-induced osteoporosis (GIO). DXA of L1–L3 and total hip, QCT of L1–L3, and HRQCT of T12 were available for 73 men (54.6±14.0years) with GIO. Prevalent vertebral fracture status was evaluated on radiographs using a semi-quantitative (SQ) score (normal=0 to severe fracture=3), and the spinal deformity index (SDI) score (sum of SQ scores of T4 to L4 vertebrae). Thirty-one (42.4%) subjects had prevalent vertebral fractures. Cortical BMD (Ct.BMD) and thickness (Ct.Th), trabecular BMD (Tb.BMD), apparent trabecular bone volume fraction (app.BV/TV), and apparent trabecular separation (app.Tb.Sp) were analyzed by HRQCT. Stiffness and strength of T12 were computed by HRQCT-based nonlinear FEA for axial compression, anterior bending and axial torsion. In logistic regressions adjusted for age, glucocorticoid dose and osteoporosis treatment, Tb.BMD was most closely associated with vertebral fracture status (standardized odds ratio [sOR]: Tb.BMD T12: 4.05 [95% CI: 1.8–9.0], Tb.BMD L1–L3: 3.95 [1.8–8.9]). Strength divided by cross-sectional area for axial compression showed the most significant association with spine fracture status among FEA variables (2.56 [1.29–5.07]). SDI was best predicted by a microstructural model using Ct.Th and app.Tb.Sp (r2=0.57, p<0.001). Spinal or hip DXA measurements did not show significant associations with fracture status or severity. In this cross-sectional study of males with GIO, QCT, HRQCT-based measurements and FEA variables were superior to DXA in discriminating between patients of differing prevalent vertebral fracture status. A microstructural model combining aspects of cortical and trabecular bone reflected fracture severity most accurately.
Resumo:
Reconstruction of shape and intensity from 2D x-ray images has drawn more and more attentions. Previously introduced work suffers from the long computing time due to its iterative optimization characteristics and the requirement of generating digitally reconstructed radiographs within each iteration. In this paper, we propose a novel method which uses a patient-specific 3D surface model reconstructed from 2D x-ray images as a surrogate to get a patient-specific volumetric intensity reconstruction via partial least squares regression. No DRR generation is needed. The method was validated on 20 cadaveric proximal femurs by performing a leave-one-out study. Qualitative and quantitative results demonstrated the efficacy of the present method. Compared to the existing work, the present method has the advantage of much shorter computing time and can be applied to both DXA images as well as conventional x-ray images, which may hold the potentials to be applied to clinical routine task such as total hip arthroplasty (THA).
Resumo:
BACKGROUND In postmenopausal women, yearly intravenous zoledronate (ZOL) compared to placebo (PLB) significantly increased bone mineral density (BMD) at lumbar spine (LS), femoral neck (FN), and total hip (TH) and decreased fracture risk. The effects of ZOL on BMD at the tibial epiphysis (T-EPI) and diaphysis (T-DIA) are unknown. METHODS A randomized controlled ancillary study of the HORIZON trial was conducted at the Department of Osteoporosis of the University Hospital of Berne, Switzerland. Women with ≥1 follow-up DXA measurement who had received ≥1 dose of either ZOL (n=55) or PLB (n=55) were included. BMD was measured at LS, FN, TH, T-EPI, and T-DIA at baseline, 6, 12, 24, and 36 months. Morphometric vertebral fractures were assessed. Incident clinical fractures were recorded as adverse events. RESULTS Baseline characteristics were comparable with those in HORIZON and between groups. After 36 months, BMD was significantly higher in women treated with ZOL vs. PLB at LS, FN, TH, and T-EPI (+7.6%, +3.7%, +5.6%, and +5.5%, respectively, p<0.01 for all) but not T-DIA (+1.1%). The number of patients with ≥1 incident non-vertebral or morphometric fracture did not differ between groups (9 ZOL/11 PLB). Mean changes in BMD did not differ between groups with and without incident fracture, except that women with an incident non-vertebral fracture had significantly higher bone loss at predominantly cortical T-DIA (p=0.005). CONCLUSION ZOL was significantly superior to PLB at T-EPI but not at T-DIA. Women with an incident non-vertebral fracture experienced bone loss at T-DIA.
Resumo:
BACKGROUND Acetabular retroversion is associated with pincer-type femoroacetabular impingement and can lead to hip osteoarthritis. We report the ten-year results of a previously described patient cohort that had corrective periacetabular osteotomy for the treatment of symptomatic acetabular retroversion. METHODS Clinical and radiographic parameters were assessed preoperatively and at two and ten years postoperatively. A Kaplan-Meier survivorship analysis of the twenty-two patients (twenty-nine hips) with a mean follow-up (and standard deviation) of 11 ± 1 years (range, nine to twelve years) was performed. In addition, a univariate Cox regression analysis was done with conversion to total hip arthroplasty as the primary end point and progression of the osteoarthritis, a fair or poor result according to the Merle d'Aubigné score, or the need for revision surgery as the secondary end points. RESULTS The mean Merle d'Aubigné score improved significantly from 14 ± 1.4 points (range, 12 to 17 points) preoperatively to 16.9 ± 0.9 points (range, 15 to 18 points) at ten years (p < 0.001). There were also significant improvements with regard to hip flexion (p = 0.003), internal rotation (p = 0.003), and adduction (p = 0.002) compared with the preoperative status. No significant increase of the mean Tönnis osteoarthritis score was seen at ten years (p = 0.06). The cumulative ten-year survivorship, with conversion to a total hip arthroplasty as the primary end point, was 100%. The cumulative ten-year survivorship in achievement of one of the secondary end points was 71% (95% confidence interval, 54% to 88%). Predictors for poor outcome were the lack of femoral offset creation and overcorrection of the acetabular version resulting in excessive anteversion. CONCLUSIONS Anteverting periacetabular osteotomy for acetabular retroversion leads to favorable long-term results with preservation of the native hip at a mean of ten years. Overcorrection resulting in excessive anteversion of the hip and omitting concomitant offset creation of the femoral head-neck junction are associated with an unfavorable outcome.