97 resultados para Sisters, Servants of the Immaculate Heart of Mary
Resumo:
Numerous designs of bioprosthetic valves exist. The sutureless surgical valve is a newer design concept which combines elements of the transcatheter valve technology with surgical valves. This design aims at shorter and easier implantation. It was the aim of this study to perform hemodynamic and kinematic measurements for this type of valves to serve as a baseline for following studies which investigate the effect of the aortic root on the valve performance. To this end, the Edwards Intuity aortic valve was investigated in a new in vitro flow loop mimicking the left heart. The valve was implanted in a transparent, compliant aortic root model, and the valve kinematics was investigated using a high speed camera together with synchronized hemodynamic measurements of pressures and flows. The valve closure was asynchronous (one by one leaflet), and the valve started to close before the deceleration of the fluid. The aortic root model showed a dilation of the sinuses which was different to the ascending aorta, and the annulus was found to move towards the left ventricle during diastole and towards the aorta during systole.
Resumo:
Purpose: Traditionally, the proximal isovelocity surface area (PISA) is based on the assumption of a single hemisphere (hemispheric PISA), but this technique has not been validated for the quantification of mitral regurgitation (MR) with multiple jets. Methods: The left heart simulator was actuated by a pulsatile pump at various stroke amplitudes. The regurgitant volume (Rvol) passing through the mitral valve phantoms with single and double regurgitant orifices of varying size and interspace was quantified by a flowmeter as reference technique. Color Doppler 3-D full-volumes were obtained, and Rvol were derived from 2-D PISA surfaces on the basis of hemispheric and hemicylindric assumption with one base (partial hemicylindric PISA) or 2 bases (total hemicylindric PISA). Results: 72 regurgitant volumes (Rvol range: 8 to 76 ml/beat) were obtained. Hemispheric PISA Rvol correlated well with reference Rvol by one orifice (R²=0.97; bias -2.7±3.2ml), but less by ≥ one orifice (R²=0.89). When a fusion of two PISAs occured, addition of two hemispheric PISA overestimated Rvol (bias 9.1±12.2ml, fig.1), and single hemispheric PISA underestimated Rvol (bias -12.4±4.9ml). If an integrated approach was used (hemispheric in single orifice, total hemicylindric in two non-fused PISAs and partial hemicylindric in two fused PISAs), the correlation was R²=0.95, bias -1.6±5.6ml (fig.2). In the ROC analysis, the cutoff to detect ≥ moderate-to-severe Rvol (≥45ml) was 42ml (AUC 0.99, sens. 100%, spec. 93%). Conclusions: In MR with two regurgitant jets, the 2-D hemicylindric assumption of the PISA offers a better quantification of Rvol than the hemispheric assumption. Quantification of MR using 2-D PISA requires an integrated approach that considers number of regurgitant orifices and fusion of the PISAs.
Resumo:
In Switzerland 200’000 people suffer from congestive heart failure. Approximately 10’000 patients find themselves in an advanced state of the disease. When conservative treatment options are no longer available heart transplantation is the therapy of choice. Should this not be an option due to long waiting lists or medical issues assist device therapy becomes an option. Assist device therapy is separated in short-term and long-term support. Long-term support is nowadays performed with ventricular assist devices (VADs). The native heart is still in place and supported in parallel to the remaining function of the heart. The majority of patients are treated with a left ventricular assist device (LVAD). The right ventrical alone (RVAD) as well as bi-ventricular support (BiVAD) is rarely needed. The modern VADs are implantable and create a non-pulsative bloodflow. A percutaneous driveline enables energy supply and pump-control. Indication strategies for VAD implantations include bridge to transplant (short term support), bridge to candidacy and bridge to transplant. VADs become more and more a definite therapeutic option (destination therapy). VAD therapy might be a realistic alternative to organ transplantation in the near future.
Resumo:
One novel treatment strategy for the diseased heart focuses on the use of pluripotent stem cell-derived cardiomyocytes (SC-CMs) to overcome the heart's innate deficiency for self-repair. However, targeted application of SC-CMs requires in-depth characterization of their true cardiogenic potential in terms of excitability and intercellular coupling at cellular level and in multicellular preparations. In this study, we elucidated the electrical characteristics of single SC-CMs and intercellular coupling quality of cell pairs, and concomitantly compared them with well-characterized murine native neonatal and immortalized HL-1 cardiomyocytes. Firstly, we investigated the electrical properties and Ca2+ signaling mechanisms specific to cardiac contraction in single SC-CMs. Despite heterogeneity of the new cardiac cell population, their electrophysiological activity and Ca2+ handling were similar to native cells. Secondly, we investigated the capability of paired SC-CMs to form an adequate subunit of a functional syncytium and analyzed gap junctions and signal transmission by dye transfer in cell pairs. We discovered significantly diminished coupling in SC-CMs compared with native cells, which could not be enhanced by a coculture approach combining SC-CMs and primary CMs. Moreover, quantitative and structural analysis of gap junctions presented significantly reduced connexin expression levels compared with native CMs. Strong dependence of intercellular coupling on gap junction density was further confirmed by computational simulations. These novel findings demonstrate that despite the cardiogenic electrophysiological profile, SC-CMs present significant limitations in intercellular communication. Inadequate coupling may severely impair functional integration and signal transmission, which needs to be carefully considered for the prospective use of SC-CMs in cardiac repair.
Resumo:
AIMS Our aim was to report on a survey initiated by the European Association of Percutaneous Cardiovascular Interventions (EAPCI) concerning opinion on the evidence relating to dual antiplatelet therapy (DAPT) duration after coronary stenting. METHODS AND RESULTS Results from three randomised clinical trials were scheduled to be presented at the American Heart Association Scientific Sessions 2014 (AHA 2014). A web-based survey was distributed to all individuals registered in the EuroIntervention mailing list (n=15,200) both before and after AHA 2014. A total of 1,134 physicians responded to the first (i.e., before AHA 2014) and 542 to the second (i.e., after AHA 2014) survey. The majority of respondents interpreted trial results consistent with a substantial equipoise regarding the benefits and risks of an extended versus a standard DAPT strategy. Two respondents out of ten believed extended DAPT should be implemented in selected patients. After AHA 2014, 46.1% of participants expressed uncertainty about the available evidence on DAPT duration, and 40.0% the need for clinical guidance. CONCLUSIONS This EAPCI survey highlights considerable uncertainty within the medical community with regard to the optimal duration of DAPT after coronary stenting in the light of recent reported trial results. Updated recommendations for practising physicians to guide treatment decisions in routine clinical practice should be provided by international societies.
Resumo:
The ATLS program by the American college of surgeons is probably the most important globally active training organization dedicated to improve trauma management. Detection of acute haemorrhagic shock belongs to the key issues in clinical practice and thus also in medical teaching. (In this issue of the journal William Schulz and Ian McConachrie critically review the ATLS shock classification Table 1), which has been criticized after several attempts of validation have failed [1]. The main problem is that distinct ranges of heart rate are related to ranges of uncompensated blood loss and that the heart rate decrease observed in severe haemorrhagic shock is ignored [2]. Table 1. Estimated blood loos based on patient's initial presentation (ATLS Students Course Manual, 9th Edition, American College of Surgeons 2012). Class I Class II Class III Class IV Blood loss ml Up to 750 750–1500 1500–2000 >2000 Blood loss (% blood volume) Up to 15% 15–30% 30–40% >40% Pulse rate (BPM) <100 100–120 120–140 >140 Systolic blood pressure Normal Normal Decreased Decreased Pulse pressure Normal or ↑ Decreased Decreased Decreased Respiratory rate 14–20 20–30 30–40 >35 Urine output (ml/h) >30 20–30 5–15 negligible CNS/mental status Slightly anxious Mildly anxious Anxious, confused Confused, lethargic Initial fluid replacement Crystalloid Crystalloid Crystalloid and blood Crystalloid and blood Table options In a retrospective evaluation of the Trauma Audit and Research Network (TARN) database blood loss was estimated according to the injuries in nearly 165,000 adult trauma patients and each patient was allocated to one of the four ATLS shock classes [3]. Although heart rate increased and systolic blood pressure decreased from class I to class IV, respiratory rate and GCS were similar. The median heart rate in class IV patients was substantially lower than the value of 140 min−1 postulated by ATLS. Moreover deterioration of the different parameters does not necessarily go parallel as suggested in the ATLS shock classification [4] and [5]. In all these studies injury severity score (ISS) and mortality increased with in increasing shock class [3] and with increasing heart rate and decreasing blood pressure [4] and [5]. This supports the general concept that the higher heart rate and the lower blood pressure, the sicker is the patient. A prospective study attempted to validate a shock classification derived from the ATLS shock classes [6]. The authors used a combination of heart rate, blood pressure, clinically estimated blood loss and response to fluid resuscitation to classify trauma patients (Table 2) [6]. In their initial assessment of 715 predominantly blunt trauma patients 78% were classified as normal (Class 0), 14% as Class I, 6% as Class II and only 1% as Class III and Class IV respectively. This corresponds to the results from the previous retrospective studies [4] and [5]. The main endpoint used in the prospective study was therefore presence or absence of significant haemorrhage, defined as chest tube drainage >500 ml, evidence of >500 ml of blood loss in peritoneum, retroperitoneum or pelvic cavity on CT scan or requirement of any blood transfusion >2000 ml of crystalloid. Because of the low prevalence of class II or higher grades statistical evaluation was limited to a comparison between Class 0 and Class I–IV combined. As in the retrospective studies, Lawton did not find a statistical difference of heart rate and blood pressure among the five groups either, although there was a tendency to a higher heart rate in Class II patients. Apparently classification during primary survey did not rely on vital signs but considered the rather soft criterion of “clinical estimation of blood loss” and requirement of fluid substitution. This suggests that allocation of an individual patient to a shock classification was probably more an intuitive decision than an objective calculation the shock classification. Nevertheless it was a significant predictor of ISS [6]. Table 2. Shock grade categories in prospective validation study (Lawton, 2014) [6]. Normal No haemorrhage Class I Mild Class II Moderate Class III Severe Class IV Moribund Vitals Normal Normal HR > 100 with SBP >90 mmHg SBP < 90 mmHg SBP < 90 mmHg or imminent arrest Response to fluid bolus (1000 ml) NA Yes, no further fluid required Yes, no further fluid required Requires repeated fluid boluses Declining SBP despite fluid boluses Estimated blood loss (ml) None Up to 750 750–1500 1500–2000 >2000 Table options What does this mean for clinical practice and medical teaching? All these studies illustrate the difficulty to validate a useful and accepted physiologic general concept of the response of the organism to fluid loss: Decrease of cardiac output, increase of heart rate, decrease of pulse pressure occurring first and hypotension and bradycardia occurring only later. Increasing heart rate, increasing diastolic blood pressure or decreasing systolic blood pressure should make any clinician consider hypovolaemia first, because it is treatable and deterioration of the patient is preventable. This is true for the patient on the ward, the sedated patient in the intensive care unit or the anesthetized patients in the OR. We will therefore continue to teach this typical pattern but will continue to mention the exceptions and pitfalls on a second stage. The shock classification of ATLS is primarily used to illustrate the typical pattern of acute haemorrhagic shock (tachycardia and hypotension) as opposed to the Cushing reflex (bradycardia and hypertension) in severe head injury and intracranial hypertension or to the neurogenic shock in acute tetraplegia or high paraplegia (relative bradycardia and hypotension). Schulz and McConachrie nicely summarize the various confounders and exceptions from the general pattern and explain why in clinical reality patients often do not present with the “typical” pictures of our textbooks [1]. ATLS refers to the pitfalls in the signs of acute haemorrhage as well: Advanced age, athletes, pregnancy, medications and pace makers and explicitly state that individual subjects may not follow the general pattern. Obviously the ATLS shock classification which is the basis for a number of questions in the written test of the ATLS students course and which has been used for decades probably needs modification and cannot be literally applied in clinical practice. The European Trauma Course, another important Trauma training program uses the same parameters to estimate blood loss together with clinical exam and laboratory findings (e.g. base deficit and lactate) but does not use a shock classification related to absolute values. In conclusion the typical physiologic response to haemorrhage as illustrated by the ATLS shock classes remains an important issue in clinical practice and in teaching. The estimation of the severity haemorrhage in the initial assessment trauma patients is (and was never) solely based on vital signs only but includes the pattern of injuries, the requirement of fluid substitution and potential confounders. Vital signs are not obsolete especially in the course of treatment but must be interpreted in view of the clinical context. Conflict of interest None declared. Member of Swiss national ATLS core faculty.
Resumo:
The cardiotoxic potential of cytotoxic cancer chemotherapy is well known. Prime examples are the anthracyclines, which are highly efficacious agents for hemopoietic malignancies and solid tumors, but their clinical use is limited primarily by cardiotoxicity. Besides the conventional chemotherapeutics, new cancer drugs were developed in the last decade with the goal to specifically inhibit selected molecular targets such as growth factor receptors or intracellular tyrosine kinases in cancer cells. However, the outcome of combining conventional and newer cancer therapies could have unexpected side effects not anticipated so far and the long-term outcome is not known. Sometimes, however, unexpected side effects also shed light on previously unknown physiological functions. For example, the anti-HER2 cancer therapeutic trastuzumab (Herceptin), which can induce cardiac dysfunction, has demonstrated the importance of the ErbB/neuregulin signaling system in the adult heart. Subsequently, the role of endothelial-myocardial communication in maintaining phenotype and survival of adult cardiomyocytes has increasingly been recognized.
Resumo:
One of the most powerful regulators of cardiovascular function is catecholamine-stimulated adrenergic receptor (AR) signaling. The failing heart is characterized by desensitization and impaired beta-AR responsiveness as a result of upregulated G protein-coupled receptor kinase-2 (GRK2) present in injured myocardium. Deterioration of cardiac function is progressively enhanced by chronic adrenergic over-stimulation due to increased levels of circulating catecholamines. Increased GRK2 activity contributes to this pathological cycle of over-stimulation but lowered responsiveness. Over the past two decades the GRK2 inhibitory peptide betaARKct has been identified as a potential therapy that is able to break this vicious cycle of self-perpetuating deregulation of the beta-AR system and subsequent myocardial malfunction, thus halting development of cardiac failure. The betaARKct has been shown to interfere with GRK2 binding to the betagamma subunits of the heterotrimeric G protein, therefore inhibiting its recruitment to the plasma membrane that normally leads to phosphorylation and internalization of the receptor. In this article we summarize the current data on the therapeutic effects of betaARKct in cardiovascular disease and report on recent and ongoing studies that may pave the way for this peptide towards therapeutic application in heart failure and other states of cardiovascular disease.
Resumo:
This article discusses performance in the context of the World Trade Organization (WTO). Applying the framework by Gutner and Thompson and inspired by principal-agent theory, it is argued that existing studies have underspecified the institutional milieu that affects performance. The WTO represents a member-driven organization where Members are part of the international organization (IO) (e.g., through rule-making) and at the same time act outside the IO (e.g., through implementation). Thus, a narrow reading of the IO (focusing on the civil servants and the Director-General and his staff) will not suffice to understand IO performance in the WTO context. Selected evidence is presented to illustrate aspects of the WTO’s inner-working and the institutional milieu of performance. In addition, the article discusses a number of performance parameters, including the relationship between Secretariat autonomy and performance, the role of information, and the mechanisms of performance aggregation. The article ends by cautioning against quick fixes to the system to improve performance.
Resumo:
Aims Cardiac grafts from non-heartbeating donors (NHBDs) could significantly increase organ availability and reduce waiting-list mortality. Reluctance to exploit hearts from NHBDs arises from obligatory delays in procurement leading to periods of warm ischemia and possible subsequent contractile dysfunction. Means for early prediction of graft suitability prior to transplantation are thus required for development of heart transplantation programs with NHBDs. Methods and Results Hearts (n = 31) isolated from male Wistar rats were perfused with modified Krebs-Henseleit buffer aerobically for 20 min, followed by global, no-flow ischemia (32°C) for 30, 50, 55 or 60 min. Reperfusion was unloaded for 20 min, and then loaded, in working-mode, for 40 min. Left ventricular (LV) pressure was monitored using a micro-tip pressure catheter introduced via the mitral valve. Several hemodynamic parameters measured during early, unloaded reperfusion correlated significantly with LV work after 60 min reperfusion (p<0.001). Coronary flow and the production of lactate and lactate dehydrogenase (LDH) also correlated significantly with outcomes after 60 min reperfusion (p<0.05). Based on early reperfusion hemodynamic measures, a composite, weighted predictive parameter, incorporating heart rate (HR), developed pressure (DP) and end-diastolic pressure, was generated and evaluated against the HR-DP product after 60 min of reperfusion. Effective discriminating ability for this novel parameter was observed for four HR*DP cut-off values, particularly for ≥20 *103 mmHg*beats*min−1 (p<0.01). Conclusion Upon reperfusion of a NHBD heart, early evaluation, at the time of organ procurement, of cardiac hemodynamic parameters, as well as easily accessible markers of metabolism and necrosis seem to accurately predict subsequent contractile recovery and could thus potentially be of use in guiding the decision of accepting the ischemic heart for transplantation.
Resumo:
Transcatheter aortic valve implantation (TAVI) for the treatment of symptomatic severe aortic stenosis has emerged as an effective treatment for high risk patients. In 2002 TAVI was performed for the first time in a human by Alain Cribier, using an antegrade access approach via the femoral vein, crossing the intra-atrial septum after puncture and passing the native aortic valve in the direction of blood flow. This technically demanding approach was subsequently replaced by retrograde transfemoral arterial access. For patients with severe peripheral vascular disease or inadequately sized femoral arteries, the transapical route provides an alternative route with antegrade access to the aortic valve via puncture of the anterolateral wall of the left ventricle. The transsubclavian access approach using most frequently the left subclavian artery and direct transaortic access have been introduced more recently and attest to the versatility of TAVI in terms of access site. This article will focus on the different access site options available to operators, provide a step-by-step guide through the procedure, and a detailed description of the technological evolution of transcatheter heart valve systems.
Resumo:
Myocardial depression after cardiac surgery is modulated by cardiopulmonary bypass (CPB) and the underlying heart disease. The sodium pump is a key component for myocardial function. We hypothesized that the change in sodium pump expression during CPB correlates with intraoperative and postoperative laboratory and clinical parameters in neonates and children with various congenital heart defects. Sodium pump isoforms alpha1 (ATP1A1) and alpha3 (ATP1A3) mRNA expression in right atrial myocardium, excised before and after CPB, was quantified. Groups were assigned according to presence (VO group, n = 8) or absence (NO group, n = 8) of right atrial volume overload. CPB and aortic clamp time correlated with postoperative troponin-I values and ICU stay. ATP1A1 (P = 0.008) and ATP1A3 (P = 0.038) mRNA expression were significantly reduced during CPB. Longer aortic clamp times were associated with lower postoperative ATP1A1 (P = 0.045) and ATP1A3 (P = 0.002) mRNA expression. Low postoperative ATP1A1 (P = 0.043) and ATP1A3 (P = 0.002) expressions were associated with high troponin-I values. These results were restricted to the VO group. No correlation of sodium pump mRNA expression was found with the duration of ICU stay or ventilation. The postoperative troponin-I and clinical parameters correlated with the length of CPB, regardless of volume overload. In contrast, only dilated right atrium seemed to be susceptible to CPB in terms of sodium pump expression, showing a reduction during the operation and a correlation of sodium pump with postoperative troponin-I values.
Resumo:
Myocardial dysfunction and arrhythmias may be induced by congenital heart defects, but also be the result of heart surgery with cardiopulmonary bypass (CPB), potentially caused by differential expression of connexin40 (Cx40) and connexin43 (Cx43). In 16 pediatric patients undergoing corrective heart surgery, connexin mRNA expression was studied in volume overloaded (VO group, n=8) and not overloaded (NO group, n=8) right atrial myocardium, excised before and after CPB. Additionally, in eight of these patients ventricular specimens were investigated. The atrial Cx43 expression decreased during CPB, which was restricted to the VO group (p=0.008). In contrast, atrial Cx40 mRNA did not change during CPB. In ventricular myocardium compared to atrial mRNA levels, Cx40 was lower (p=0.006) and Cx43 higher (p=0.017) expressed, without significant change during CPB. This study revealed a significant influence of CPB and the underlying heart defect on Cx43 expression.
Resumo:
BACKGROUND: Restrictive lung defects are associated with higher mortality in patients with acquired chronic heart failure. We investigated the prevalence of abnormal lung function, its relation to severity of underlying cardiac defect, its surgical history, and its impact on outcome across the spectrum of adult congenital heart disease. METHODS AND RESULTS: A total of 1188 patients with adult congenital heart disease (age, 33.1+/-13.1 years) undergoing lung function testing between 2000 and 2009 were included. Patients were classified according to the severity of lung dysfunction based on predicted values of forced vital capacity. Lung function was normal in 53% of patients with adult congenital heart disease, mildly impaired in 17%, and moderately to severely impaired in the remainder (30%). Moderate to severe impairment of lung function related to complexity of underlying cardiac defect, enlarged cardiothoracic ratio, previous thoracotomy/ies, body mass index, scoliosis, and diaphragm palsy. Over a median follow-up period of 6.7 years, 106 patients died. Moderate to severe impairment of lung function was an independent predictor of survival in this cohort. Patients with reduced force vital capacity of at least moderate severity had a 1.6-fold increased risk of death compared with patients with normal lung function (P=0.04). CONCLUSIONS: A reduced forced vital capacity is prevalent in patients with adult congenital heart disease; its severity relates to the complexity of the underlying heart defect, surgical history, and scoliosis. Moderate to severe impairment of lung function is an independent predictor of mortality in contemporary patients with adult congenital heart disease.
Resumo:
AIM It is unknown how the heart distinguishes various overloads, such as exercise or hypertension, causing either physiological or pathological hypertrophy. We hypothesize that alpha-calcitonin-gene-related peptide (αCGRP), known to be released from contracting skeletal muscles, is key at this remodelling. METHODS The hypertrophic effect of αCGRP was measured in vitro (cultured cardiac myocytes) and in vivo (magnetic resonance imaging) in mice. Exercise performance was assessed by determination of maximum oxygen consumption and time to exhaustion. Cardiac phenotype was defined by transcriptional analysis, cardiac histology and morphometry. Finally, we measured spontaneous activity, body fat content, blood volume, haemoglobin mass and skeletal muscle capillarization and fibre composition. RESULTS While αCGRP exposure yielded larger cultured cardiac myocytes, exercise-induced heart hypertrophy was completely abrogated by treatment with the peptide antagonist CGRP(8-37). Exercise performance was attenuated in αCGRP(-/-) mice or CGRP(8-37) treated wild-type mice but improved in animals with higher density of cardiac CGRP receptors (CLR-tg). Spontaneous activity, body fat content, blood volume, haemoglobin mass, muscle capillarization and fibre composition were unaffected, whereas heart index and ventricular myocyte volume were reduced in αCGRP(-/-) mice and elevated in CLR-tg. Transcriptional changes seen in αCGRP(-/-) (but not CLR-tg) hearts resembled maladaptive cardiac phenotype. CONCLUSIONS Alpha-calcitonin-gene-related peptide released by skeletal muscles during exercise is a hitherto unrecognized effector directing the strained heart into physiological instead of pathological adaptation. Thus, αCGRP agonists might be beneficial in heart failure patients.