81 resultados para Interactions and Diffusion


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gas diffusion research in soils covers, to a large extent, the transport behavior of practically insoluble gases. We extend the mathematical description of gas transport to include reactive gaseous components that hydrolyze in water such as SO2 and CO2. The path between the free atmosphere and the microporous niches is modeled by assuming penetration through gas-filled macropores, air-water phase transfer, and diffusion and speciation in the liquid phase. For hydrolyzable gases, the rate of mass transfer into and the total absorption capacity of the soil solution may be high. Both the capacity and the transfer rate are influenced by the soil-solution pH; for high pH, they become extremely high for SO2. The soil absorption of such gases is also influenced by soil structure. Well-aerated, near-neutral soils are a potentially important sink for SO2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mice that lack all beta1-class integrins in neurons and glia die prematurely after birth with severe brain malformations. Cortical hemispheres and cerebellar folia fuse, and cortical laminae are perturbed. These defects result from disorganization of the cortical marginal zone, where beta1-class integrins regulate glial endfeet anchorage, meningeal basement membrane remodeling, and formation of the Cajal-Retzius cell layer. Surprisingly, beta1-class integrins are not essential for neuron-glia interactions and neuronal migration during corticogenesis. The phenotype of the beta1-deficient mice resembles pathological changes observed in human cortical dysplasias, suggesting that defective integrin-mediated signal transduction contributes to the development of some of these diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Designs for deep geological respositories of nuclear waste include bentonite as a hydraulic and chemisorption buffer material to protect the biosphere from leakage of radionuclides. Bentonite is chosen because it is a cheap, naturally occurring material with the required properties. It consists essentially of montmorillonite, a swelling clay mineral. Upon contact with groundwater such clays can seal the repository by incorporating water in the interlayers of their crystalline structure. The intercalated water exhibits significantly different properties to bulk water in the surrounding interparticle pores, such as lower diffusion coefficients (González Sánchez et. al. 2008). This doctoral thesis presents water distribution and diffusion behavior on various time and space scales in montmorillonite. Experimental results are presented for Na- and Cs-montmorillonite samples with a range of bulk dry densities (0.8 to 1.7 g/cm3). The experimental methods employed were neutron scattering (backscattering, diffraction, time-of-flight), adsorption measurements (water, nitrogen) and tracer-through diffusion. For the tracer experiments the samples were fully saturated via the liquid phase under volume-constrained conditions. In contrast, for the neutron scattering experiments, the samples were hydrated via the vapor phase and subsequently compacted, leaving a significant fraction of interparticle pores unfilled with water. Owing to these differences in saturation, the water contents of the samples for neutron scattering were characterized by gravimetry whereas those for the tracer experiments were obtained from the bulk dry density. The amount of surface water in interlayer pores could be successfully discriminated from the amount of bulk-like water in interparticle pores in Na- and Csmontmorillonite using neutron spectroscopy. For the first time in the literature, the distribution of water between these two pore environments was deciphered as a function of gravimetric water content. The amount was compared to a geometrical estimation of the amount of interlayer and interparticle water determined by neutron diffraction and adsorption measurements. The relative abundances of the 1 to 4 molecular water layers in the interlayer were determined from the area ratios of the (001)-diffraction peaks. Depending on the characterization method, different fractions of surface water and interlayer water were obtained. Only surface and interlayer water exists in amontmorillonite with water contents up to 0.18 g/g according to spectroscopic measurements and up to 0.32 g/g according to geometrical estimations, respectively. At higher water contents, bulk-like and interparticle water also exists. The amounts increase monotonically, but not linearly, from zero to 0.33 g/g for bulk-like water and to 0.43 g/g for interparticle water. It was found that water most likely redistributes between the surface and interlayer sites during the spectroscopic measurements and therefore the reported fraction is relevant only below about -10 ºC (Anderson, 1967). The redistribution effect can explain the discrepancy in fractions between the methods. In a novel approach the fractions of water in different pore environments were treated as a fixed parameter to derive local diffusion coefficients for water from quasielastic neutron scattering data, in particular for samples with high water contents. Local diffusion coefficients were obtained for the 1 to 4 molecular water layers in the interlayer of 0.5·10–9, 0.9·10–9, 1.5·10–9 and 1.4·10–9 m²/s, respectively, taking account of the different water fractions (molecular water layer, bulk-like water). The diffusive transport of 22Na and HTO through Na-montmorillonite was measured on the laboratory experimental scale (i.e. cm, days) by tracer through-diffusion experiments. We confirmed that diffusion of HTO is independent of the ionic strength of the external solution in contact with the clay sample but dependent on the bulk dry density. In contrast, the diffusion of 22Na was found to depend on both the ionic strength of the pore solution and on the bulk dry density. The ratio of the pore and surface diffusion could be experimentally determined for 22Na from the dependence of the diffusion coefficient on the ionic strength. Activation energies were derived from the temperaturedependent diffusion coefficients via the Arrhenius relation. In samples with high bulk dry density the activation energies are slightly higher than those of bulk water whereas in low density samples they are lower. The activation energies as a function of ionic strengths of the pore solutions are similar for 22Na and HTO. The facts that (i) the slope of the logarithmic effective diffusion coefficients as a function of the logarithmic ionic strength is less than unity for low bulk dry densities and (ii) two water populations can be observed for high gravimetric water contents (low bulk dry densities) support the interlayer and interparticle porosity model proposed by Glaus et al. (2007), Bourg et al. (2006, 2007) and Gimmi and Kosakowski (2011).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stress of dental treatment often elicits negative emotions in children, expressed as dental fear or anxiety. Highly anxious children obstruct treatment and avoid therapy, further amplifying oral health problems. The aim of this study was to examine the neuroendocrine and autonomic nervous system responses to dental treatment and their possible interactions and associations with psychometric indices of anxiety, caries, previous dental experience, anesthesia, age and gender in school children. Upon informed consent, saliva was obtained from 97 children (59% males, mean age ±  SD: 89.73 ± 15 months) in the Clinic of pediatric dentistry before treatment, immediately post-treatment and at the recall visit to determine cortisol and salivary alpha-amylase (sAA) levels. Dental and general anxiety was assessed through specific questionnaires completed by the children. Compared to pre-treatment, cortisol levels were increased following treatment, while sAA levels were higher at the recall. Pre- and post-treatment cortisol and sAA responses were positively correlated. Dental and general anxiety questionnaire scores were also significantly correlated with each other. The integrated autonomic and neuroendocrine responses prior to treatment were correlated with state anxiety and those following treatment with dental anxiety. However, univariable and multivariable linear regression analysis associated post-treatment cortisol, but not sAA, levels with dental anxiety. No associations of cortisol or sAA responses with caries, age, gender, previous dental experience or anesthesia were detected. These data provide some evidence that both sAA and cortisol levels are altered in children in anticipation or during dental treatment, but only cortisol levels are associated to dental anxiety.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This person-centred study investigated the longitudinal patterns of vocational identity development in relation to personality, the development of well-being, gender, nationality and the attended school track among two cohorts of Swiss adolescents in 8th or 9th grade (N = 269) and in 11th or 12th grade (N = 230). The results confirmed the existence of four identity statuses, namely, achievement, foreclosure, moratorium and diffusion. Forty-two per cent of students showed progressive patterns of identity development, while 37% remained in their identity status over time. Students with different statuses and status change patterns differed significantly in their personality traits. Higher neuroticism related to the emergence of identity exploration over time, while conscientiousness related to maintaining or achieving a sense of identity commitment in terms of achievement or foreclosure. Controlling for the effects of socio-demographics and personality traits, students who reached or maintained a state characterized by identity clarity and commitment showed a relative increase in life satisfaction, while those entering a state of identity crisis or exploration showed a decrease in life satisfaction. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The brain is a complex neural network with a hierarchical organization and the mapping of its elements and connections is an important step towards the understanding of its function. Recent developments in diffusion-weighted imaging have provided the opportunity to reconstruct the whole-brain structural network in-vivo at a large scale level and to study the brain structural substrate in a framework that is close to the current understanding of brain function. However, methods to construct the connectome are still under development and they should be carefully evaluated. To this end, the first two studies included in my thesis aimed at improving the analytical tools specific to the methodology of brain structural networks. The first of these papers assessed the repeatability of the most common global and local network metrics used in literature to characterize the connectome, while in the second paper the validity of further metrics based on the concept of communicability was evaluated. Communicability is a broader measure of connectivity which accounts also for parallel and indirect connections. These additional paths may be important for reorganizational mechanisms in the presence of lesions as well as to enhance integration in the network. These studies showed good to excellent repeatability of global network metrics when the same methodological pipeline was applied, but more variability was detected when considering local network metrics or when using different thresholding strategies. In addition, communicability metrics have been found to add some insight into the integration properties of the network by detecting subsets of nodes that were highly interconnected or vulnerable to lesions. The other two studies used methods based on diffusion-weighted imaging to obtain knowledge concerning the relationship between functional and structural connectivity and about the etiology of schizophrenia. The third study integrated functional oscillations measured using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) as well as diffusion-weighted imaging data. The multimodal approach that was applied revealed a positive relationship between individual fluctuations of the EEG alpha-frequency and diffusion properties of specific connections of two resting-state networks. Finally, in the fourth study diffusion-weighted imaging was used to probe for a relationship between the underlying white matter tissue structure and season of birth in schizophrenia patients. The results are in line with the neurodevelopmental hypothesis of early pathological mechanisms as the origin of schizophrenia. The different analytical approaches selected in these studies also provide arguments for discussion of the current limitations in the analysis of brain structural networks. To sum up, the first studies presented in this thesis illustrated the potential of brain structural network analysis to provide useful information on features of brain functional segregation and integration using reliable network metrics. In the other two studies alternative approaches were presented. The common discussion of the four studies enabled us to highlight the benefits and possibilities for the analysis of the connectome as well as some current limitations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIM MRI and PET with 18F-fluoro-ethyl-tyrosine (FET) have been increasingly used to evaluate patients with gliomas. Our purpose was to assess the additive value of MR spectroscopy (MRS), diffusion imaging and dynamic FET-PET for glioma grading. PATIENTS, METHODS 38 patients (42 ± 15 aged, F/M: 0.46) with untreated histologically proven brain gliomas were included. All underwent conventional MRI, MRS, diffusion sequences, and FET-PET within 3±4 weeks. Performances of tumour FET time-activity-curve, early-to-middle SUVmax ratio, choline / creatine ratio and ADC histogram distribution pattern for gliomas grading were assessed, as compared to histology. Combination of these parameters and respective odds were also evaluated. RESULTS Tumour time-activity-curve reached the best accuracy (67%) when taken alone to distinguish between low and high-grade gliomas, followed by ADC histogram analysis (65%). Combination of time-activity-curve and ADC histogram analysis improved the sensitivity from 67% to 86% and the specificity from 63-67% to 100% (p < 0.008). On multivariate logistic regression analysis, negative slope of the tumour FET time-activity-curve however remains the best predictor of high-grade glioma (odds 7.6, SE 6.8, p = 0.022). CONCLUSION Combination of dynamic FET-PET and diffusion MRI reached good performance for gliomas grading. The use of FET-PET/MR may be highly relevant in the initial assessment of primary brain tumours.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drugs may stimulate the immune system by forming stable new antigenic complexes consisting of the drug or drug metabolite which is covalently bound to a protein or peptide (hapten-carrier complex). Both, B- and T-cell immunity may arise, the latter directed to hapten modified peptides presented by HLA molecules. Beside this immunological stimulation, drugs can also stimulate the immune system through binding by non-covalent bonds to proteins like immune receptors. This so-called “pharmacological interaction with immune receptors” concept (“p-i concept”) may occur with HLA or TCR molecules themselves (p-i HLA or p-i TCR), and not the immunogenic peptide. It is a type of “off-target” activity of the drug on immune receptors, but more complex as various cell types, cell interactions and functionally different T cells are involved. In this review the conditions which lead to activation of T cells by p-i are discussed: important factors for a functional consequence of drug binding is the location of binding (p-i HLA or p-i TCR); the exact site within these immune receptors; the affinity of binding and the finding that p-i HLA can stimulate the immune system like an allo-allele. The p-i concept is able to solve some puzzles of drug hypersensitivity reactions and are a basis to better treat and potentially avoid drug hypersensitivity reactions. Moreover, the p-i concept shows that in contrast to previous beliefs small molecules do interact with immune receptors with functional consequence. But these interactions are not based on “immune recognition”, are at odds with some immunological concepts, but may nevertheless open new possibilities to understand and even treat immune reactions

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: Impaired social interactions and repetitive behavior are key features of autism spectrum disorder (ASD). In the present study we compared social decision-making in subjects with and without ASD. Subjects performed five social decision-making games in order to assess trust, fairness, cooperation & competition behavior and social value orientation. Methods: 19 adults with autism spectrum disorder and 17 controls, matched for age and education, participated in the study. Each subject performed five social decision-making tasks. In the trust game, subjects could maximize their gain by sharing some of their money with another person. In the punishment game, subjects played two versions of the Dictator’s Dilemma. In the dictator condition they could share an amount of 0-100 points with another person. In the punishment condition, the opponent was able to punish the subject if he/she was not satisfied with the amount of points received. In the cooperation game, subjects played with a small group of 3 people. Each of them could (anonymously) select an amount of 5, 7.5 or 10 Swiss francs. The goal of the game was to achieve a high group minimum. In the competition game, subjects performed a dexterity task. Before performing the task, they were asked whether they wanted to compete (winner takes it all) or cooperation (sharing the joint achieved amount of points) with a randomly selected person. Lastly, subjects performed a social value orientation task where they were playing for themselves and for another person. Results: There was no overall difference between healthy controls an ASD subjects in investment in the trust game. However, healthy controls increased their investment over number of trials whereas ASD subjects did not. A similar pattern was found for the punishment game. Furthermore, ASD subjects revealed a decreased investment in the dictator condition of the punishment game. There were no mean differences in competition behavior and social value orientation. Conclusions: The results provide evidence for differences between ASD subjects and healthy controls in social decision-making. Subjects with ASD showed a more consistent behavior than healthy controls in the trust game and the dictator dilemma. The present findings provide evidence for impaired social learning in ASD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amongst the various hypotheses that challenged to explain the coexistence of species with similar life histories, theoretical, and empirical studies suggest that spatial processes may slow down competitive exclusion and hence promote coexistence even in the absence of evident trade-offs and frequent disturbances. We investigated the effects of spatial pattern and density on the relative importance of intra- and interspecific competition in a field experiment. We hypothesized that weak competitors increased biomass and seed production within neighborhoods of conspecifics, while stronger competitors would show increased biomass and seed production within neighborhoods of heterospecifics. Seeds of four annual plant species (Capsella bursa-pastoris, Stachys annua, Stellaria media, Poa annua) were sown in two spatial patterns (aggregated vs. random) and at two densities (low vs. high) in three different species combinations (monocultures, three and four species mixtures). There was a hierarchy in biomass production among the four species and C. bursa-pastoris and S. media were among the weak competitors. Capsella and Stellaria showed increased biomass production and had more individuals in the aggregated compared to the random pattern, especially when both superior competitors (S. annua, P. annua) were present. For P. annua we observed considerable differences among species combinations and unexpected pattern effects. Our findings support the hypothesis that weak competitors increase their fitness when grown in the neighborhood of conspecifics, and suggested that for the weakest competitors the species identity is not important and all other species are best avoided through intraspecific aggregation. In addition, our data suggest that the importance of spatial pattern for the other competitors might not only depend on the position within the hierarchy but also on the identity of neighbor species, species characteristics, below ground interactions, and other nonspatial factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1 We used simulated and experimental plant populations to analyse mortality-driven pattern formation under size-dependent competition. Larger plants had an advantage under size-asymmetric but not under symmetric competition. Initial patterns were random or clumped. 2 The simulations were individual-based and spatially explicit. Size-dependent competition was modelled with different rules to partition overlapping zones of influence. 3 The experiment used genotypes of Arabidopsis thaliana with different morphological plasticity and hence size-dependent competition. Compared with wild types, transgenic individuals over-expressed phytochrome A and had decreased plasticity because of disabled phytochrome-mediated shade avoidance. Therefore, competition among transgenics was more asymmetric compared with wild-types. 4 Density-dependent mortality under symmetric competition did not substantially change the initial spatial pattern. Conversely, simulations under asymmetric competition and experimental patterns of transgenic over-expressors showed patterns of survivors that deviated substantially from random mortality independent of initial patterns. 5 Small-scale initial patterns of wild types were regular rather than random or clumped. We hypothesize that this small-scale regularity may be explained by early shade avoidance of seedlings in their cotyledon stage. 6 Our experimental results support predictions from an individual-based simulation model and support the conclusion that regular spatial patterns of surviving individuals should be interpreted as evidence for strong, asymmetric competitive interactions and subsequent density-dependent mortality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important information on nuclear structure and dynamics. NN SRC have been extensively probed through two-nucleon knock- out reactions in both pion and electron scattering experiments. We report here on the detection of two-nucleon knock-out events from neutrino interactions and discuss their topological features as possibly involving NN SRC content in the target argon nuclei. The ArgoNeuT detector in the Main Injector neutrino beam at Fermilab has recorded a sample of 30 fully reconstructed charged current events where the leading muon is accompanied by a pair of protons at the interaction vertex, 19 of which have both protons above the Fermi momentum of the Ar nucleus. Out of these 19 events, four are found with the two protons in a strictly back-to-back high momenta configuration directly observed in the final state and can be associated to nucleon Resonance pionless mechanisms involving a pre-existing short range correlated np pair in the nucleus. Another fraction (four events) of the remaining 15 events have a reconstructed back-to-back configuration of a np pair in the initial state, a signature compatible with one-body Quasi Elastic interaction on a neutron in a SRC pair. The detection of these two subsamples of the collected (mu- + 2p) events suggests that mechanisms directly involving nucleon-nucleon SRC pairs in the nucleus are active and can be efficiently explored in neutrino-argon interactions with the LAr TPC technology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite increased scientific interest in the phenomenon of large-scale land acquisitions (LSLA), accurate data on implementation processes remain sparse. This paper aims at filling this gap by providing empirical in-depth knowledge on the case of the Swiss-based Addax Bioenergy Ltd. in Sierra Leone. Extensive fieldwork allowed the interdisciplinary research team 1) the identification of different actors that are necessary for the implementation on a vertical level and 2) the documentation of the heterogeneous group of project affected people’s perceptions and strategies on a horizontal level. Findings reveal that even a project labeled as best-practice example by UN agencies triggers a number of problematic processes for affected communities. The loss of natural resources that comes along with the land lease and the lack of employment possibilities mostly affects already vulnerable groups. On the other hand, strategies and resistance of local people also affect the project implementation. This shows that the horizontal and vertical levels are not separate entities. They are linked by social networks, social interactions, and means of communication and both levels take part in shaping the project’s impacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE In traumatic brain injury, diffusion-weighted and diffusion tensor imaging of the brain are essential techniques for determining the pathology sustained and the outcome. Postmortem cross-sectional imaging is an established adjunct to forensic autopsy in death investigation. The purpose of this prospective study was to evaluate postmortem diffusion tensor imaging in forensics for its feasibility, influencing factors and correlation to the cause of death compared with autopsy. METHODS Postmortem computed tomography, magnetic resonance imaging, and diffusion tensor imaging with fiber tracking were performed in 10 deceased subjects. The Likert scale grading of colored fractional anisotropy maps was correlated to the body temperature and intracranial pathology to assess the diagnostic feasibility of postmortem diffusion tensor imaging and fiber tracking. RESULTS Optimal fiber tracking (>15,000 fiber tracts) was achieved with a body temperature at 10°C. Likert scale grading showed no linear correlation (P > 0.7) to fiber tract counts. No statistically significant correlation between total fiber count and postmortem interval could be observed (P = 0.122). Postmortem diffusion tensor imaging and fiber tracking allowed for radiological diagnosis in cases with shearing injuries but was impaired in cases with pneumencephalon and intracerebral mass hemorrhage. CONCLUSIONS Postmortem diffusion tensor imaging with fiber tracking provides an exceptional in situ insight "deep into the fibers" of the brain with diagnostic benefit in traumatic brain injury and axonal injuries in the assessment of the underlying cause of death, considering influencing factors for optimal imaging technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein screening/detection is an essential tool in many laboratories. Owing to the relatively large time investments that are required by standard protocols, the development of methods with higher throughput while maintaining an at least comparable signal-to-noise ratio is highly beneficial in many research areas. This chapter describes how cold microwave technology can be used to enhance the rate of molecular interactions and provides protocols for dot blots, Western blots, and ELISA procedures permitting a completion of all incubation steps (blocking and antibody steps) within 24-45 min.