89 resultados para GLUCAGON-LIKE PEPTIDE-1
Resumo:
Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1β production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8-/- IL-1RI-/- double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.
Resumo:
The insulin-like growth factor (IGF) signaling system plays a crucial role in human cancer and the IGF-1 receptor (IGF-1R) is an attractive drug target against which a variety of novel anti-tumor agents are being developed. Deregulation of the IGF signaling pathway frequently occurs in human cancer and involves the establishment of autocrine loops comprising IGF-1 or IGF-2 and/or IGF-1R over-expression. Epidemiologic studies have documented a link between elevated IGF levels and the development of solid tumors, such as breast, colon, and prostate cancer. Anti-cancer strategies targeting the IGF signaling system involve two main approaches, namely neutralizing antibodies and small molecule inhibitors of the IGF-1R kinase activity. There are numerous reports describing anti-tumor activity of these agents in pre-clinical models of major human cancers. In addition, multiple clinical trials have started to evaluate the safety and efficacy of selected IGF-1R inhibitors, in combination with standard chemotherapeutic regimens or other targeted agents in cancer patients. In this mini review, I will discuss the role of the IGF signaling system in human cancer and the main strategies which have been so far evaluated to target the IGF-1R.
Resumo:
Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) have been identified as ligands with different effector functions of the vascular assembly and maturation-mediating receptor tyrosine kinase Tie-2. To understand the molecular interactions of the angiopoietins with their receptor, we have studied the binding of Ang-1 and Ang-2 to the Tie-2 receptor. Enzyme-linked immunosorbent assay-based competition assays and co-immunoprecipitation experiments analyzing the binding of Ang-1 and Ang-2 to truncation mutants of the extracellular domain of Tie-2 showed that the first Ig-like loop of Tie-2 in combination with the epidermal growth factor (EGF)-like repeats (amino acids 1-360) is required for angiopoietin binding. The first Ig-like domain or the EGF-like repeats alone are not capable of binding Ang-1 and Ang-2. Concomitantly, we made the surprising finding that Tie-2 exon-2 knockout mice do express a mutated Tie-2 protein that lacks 104 amino acids of the first Ig-like domain. This mutant Tie-2 receptor is functionally inactive as shown by the lack of ligand binding and receptor phosphorylation. Collectively, the data show that the first 104 amino acids of the Tie-2 receptor are essential but not sufficient for angiopoietin binding. Conversely, the first 360 amino acids (Ig-like domain plus EGF-like repeats) of the Tie-2 receptor are necessary and sufficient to bind both Ang-1 and Ang-2, which suggests that differential receptor binding is not likely to be responsible for the different functions of Ang-1 and Ang-2.
Resumo:
Peptide hormone receptors overexpressed in human tumors, such as somatostatin receptors, can be used for in vivo targeting for diagnostic and therapeutic purposes. A novel promising candidate in this field is the GLP-1 receptor, which was recently shown to be massively overexpressed in gut and lung neuroendocrine tumors--in particular, in insulinomas. Anticipating a major development of GLP-1 receptor targeting in nuclear medicine, our aim was to evaluate in vitro the GLP-1 receptor expression in a large variety of other tumors and to compare it with that in nonneoplastic tissues. METHODS: The GLP-1 receptor protein expression was qualitatively and quantitatively investigated in a broad spectrum of human tumors (n=419) and nonneoplastic human tissues (n=209) with receptor autoradiography using (125)I-GLP-1(7-36)amide. Pharmacologic competition experiments were performed to provide proof of specificity of the procedure. RESULTS: GLP-1 receptors were expressed in various endocrine tumors, with particularly high amounts in pheochromocytomas, as well as in brain tumors and embryonic tumors but not in carcinomas or lymphomas. In nonneoplastic tissues, GLP-1 receptors were present in generally low amounts in specific tissue compartments of several organs--namely, pancreas, intestine, lung, kidney, breast, and brain; no receptors were identified in lymph nodes, spleen, liver, or the adrenal gland. The rank order of potencies for receptor binding--namely, GLP-1(7-36)amide = exendin-4 >> GLP-2 = glucagon(1-29)--provided proof of specific GLP-1 receptor identification. CONCLUSION: The GLP-1 receptors may represent a novel molecular target for in vivo scintigraphy and targeted radiotherapy for a variety of GLP-1 receptor-expressing tumors. For GLP-1 receptor scintigraphy, a low-background signal can be expected, on the basis of the low receptor expression in the normal tissues surrounding tumors.
Resumo:
The role of colostrum and milk in the neonate has been chiefly recognized as a comprehensive nutrient foodstuff. In addition, the provision of colostrum-the first milk-for early immune capacity has been well documented for several species. Colostrum is additionally a rich and concentrated source of various factors that demonstrate biological activity in vitro. Three hypotheses have been proposed for the phenotypic function of these secreted bioactive components: (1) only mammary disposal, (2) mammary cell regulation, and (3) neonatal function [gastrointestinal tract (GIT) or systemic]. Traditionally, it was assumed that the development of the GIT is preprogrammed and not influenced by events occurring in the intestinal lumen. However, a large volume of research has demonstrated that colostrum (or milk-borne) bioactive components can basically contribute to the regulation of GIT growth and differentiation, while their role in postnatal development at physiological concentrations has remained elusive. Much of our current understanding is derived from cell culture and laboratory animals, but experimentation with agriculturally important species is taking place. This chapter provides an overview of work conducted primarily in neonatal calves and secondarily in other species on the effects on neonates of selected peptide endocrine factors (hormones, growth factors, in part cytokines) in colostrum. The primary focus will be on insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) and other bioactive peptides, but new interest and concern about steroids (especially estrogens) in milk are considered as well.
Resumo:
OBJECTIVE: The aim of this investigation was to assess soluble endoglin (sEng) and soluble fms-like tyrosine kinase-1 (sFlt1) as first-trimester serum markers to predict preeclampsia. STUDY DESIGN: First-trimester sera were obtained from 46 women with subsequent late-onset preeclampsia and from 92 controls. sEng and sFlt1 concentrations were determined immunoanalytically. Correlation analysis with inhibin A and placental growth factor levels was performed. RESULTS: sEng and sFlt1 serum concentrations were higher in women with subsequent preeclampsia than in controls (mean +/- SD, sEng: 5.57 +/- 1.18 ng/mL vs 5.02 +/- 1.01 ng/mL, P = .009; sFlt1: 1764 +/- 757 pg/mL vs 1537 +/- 812 pg/mL, P = .036). Sensitivities and specificities for predicting preeclampsia were 63% and 57% for sEng and 64% and 56% for sFlt1, respectively. When sEng and inhibin A were combined, the sensitivity increased to 68%, whereas the specificity was 61%. CONCLUSION: sEng and sFlt1 are increased in the first trimester in women with subsequent late-onset preeclampsia and might therefore prove useful to predict preeclampsia.