69 resultados para Diet in disease.
Resumo:
Understanding the links between genetic, epigenetic and non-genetic factors throughout the lifespan and across generations and their role in disease susceptibility and disease progression offer entirely new avenues and solutions to major problems in our society. To overcome the numerous challenges, we have come up with nine major conclusions to set the vision for future policies and research agendas at the European level.
Resumo:
Recent studies in laying hens have shown that feather peckers eat more feathers than nonpeckers. We hypothesized that food pellets containing feathers would decrease the birds' appetite for feathers and thereby also decrease feather pecking. To separate the effect of feathers from that of insoluble fiber per se, additional control groups were fed pellets containing similar amounts of cellulose. Sixty (experiment 1) and 180 (experiment 2) 1-d-old Lohmann-Selected Leghorn birds were divided into 12 groups of 5 (experiment 1) and 15 (experiment 2) birds, respectively, and kept on slatted floors. During the rearing period, 4 groups each had ad libitum access to either a commercial pelleted diet, a pelleted diet containing 5% (experiment 1) or 10% (experiment 2) of chopped feathers, respectively, or a pelleted diet containing 5% (experiment 1) or 10% (experiment 2) of cellulose, respectively. In the consecutive laying period, all groups received a commercial pelleted diet. In experiment 1, feather pecking was recorded weekly from wk 5 to wk 16. In the laying period, observations were made in wk 18, 20, 22, 23, 24, 25, 26, 27, 28, and 30. In experiment 2, feather pecking was recorded weekly from wk 5 to 11, in wk 16 to wk 18, and in wk 20 and 21. At the end of the rearing period, plumage condition per individual hen was scored. Scores from 1 (denuded) to 4 (intact) were given for each of 6 body parts. The addition of 10% of feathers to the diet reduced the number of severe feather-pecking bouts (P < 0.0129) and improved plumage condition of the back area (P < 0.001) significantly compared with control diets. The relationship between feather pecking/eating and the gastrointestinal consequences thereof, which alter feather pecking-behavior, are unclear. Understanding this relationship might be crucial for understanding the causation of feather pecking in laying hens.
Resumo:
ALS is the most common adult neurodegenerative disease that specifically affects upper and lower neurons leading to progressive paralysis and death. There is currently no effective treatment. Thus, identification of the signaling pathways and cellular mediators of ALS remains a major challenge in the search for novel therapeutics. Recent studies have shown that noncoding RNA molecules have a significant impact on normal CNS development and on causes and progression of human neurological disorders. To investigate the hypothesis that expression of the mutant SOD1 protein, which is one of the genetic causes of ALS, may alter expression of miRNAs thereby contributing to the pathogenesis of familial ALS, we compared miRNA expression in SH-SY5Y expressing either the wild type or the SOD1 protein using small RNA deep-sequencing followed by RT-PCR validation. This strategy allowed us to find a group of up and down regulated miRNAs, which are predicted to play a role in the motorneurons physiology and pathology. The aim of my work is to understand if these modulators of gene expression may play a causative role in disease onset or progression. To this end I have checked the expression level of these misregulated miRNAs derived from RNA-deep sequencing by qPCR on cDNA derived from ALS mice models at early onset of the disease. Thus, I’m looking for the most up-regulated one even in Periferal Blood Mononuclear Cell (PBMC) of sporadic ALS patients. Furthermore I’m functionally characterizing the most up-regulated miRNAs through the validation of bioinformatic-predicted targets by analyzing endogenous targets levels after microRNA transfection and by UTR-report luciferase assays. Thereafter I’ll analyze the effect of misregulated targets on pathogenesis or progression of ALS by loss of functions or gain of functions experiments, based on the identified up/down-regulation of the specific target by miRNAs. In the end I would define the mechanisms responsible for the miRNAs level misregulation, by silencing or stimulating the signal transduction pathways putatively involved in miRNA regulation.
Resumo:
In ecology, "disease tolerance" is defined as an evolutionary strategy of hosts against pathogens, characterized by reduced or absent pathogenesis despite high pathogen load. To our knowledge, tolerance has to date not been quantified and disentangled from host resistance to disease in any clinically relevant human infection. Using data from the Swiss HIV Cohort Study, we investigated if there is variation in tolerance to HIV in humans and if this variation is associated with polymorphisms in the human genome. In particular, we tested for associations between tolerance and alleles of the Human Leukocyte Antigen (HLA) genes, the CC chemokine receptor 5 (CCR5), the age at which individuals were infected, and their sex. We found that HLA-B alleles associated with better HIV control do not confer tolerance. The slower disease progression associated with these alleles can be fully attributed to the extent of viral load reduction in carriers. However, we observed that tolerance significantly varies across HLA-B genotypes with a relative standard deviation of 34%. Furthermore, we found that HLA-B homozygotes are less tolerant than heterozygotes. Lastly, tolerance was observed to decrease with age, resulting in a 1.7-fold difference in disease progression between 20 and 60-y-old individuals with the same viral load. Thus, disease tolerance is a feature of infection with HIV, and the identification of the mechanisms involved may pave the way to a better understanding of pathogenesis.
Resumo:
This chapter describes the systematics and evolution of Pasteurellaceae with emphasis on new information generated since the 3rd edition of The Prokaryotes which only included chapters dealing with Haemophilus, Actinobacillus, and Pasteurella. A major source of new information for the current chapter has been provided by whole genome sequences now available for many taxa of the family. Some 100 species and species-like taxa have been documented and 18 genera of Pasteurellaceae reported so far. Members of the family include specialized commensals, potential pathogens, or pathogens of vertebrates and mainly survive poorly in other habitats including the external environment. The pathogenic members are of major importance to animal production and human health. Members of Pasteurellaceae have relatively small genomes, probably as a result of adaption to a special habitat. The most important species in veterinary microbiology include Pasteurella multocida, Actinobacillus pleuropneumoniae, [Haemophilus] parasuis, Mannheimia haemolytica, Bibersteinia trehalosi, and Avibacterium paragallinarum, while Haemophilus influenzae and Aggregatibacter actinomycetemcomitans represent the most important species as to human disease. Traditional isolation techniques are still used in both human and veterinary clinical diagnostic laboratories although genetically based diagnostic methods have replaced traditional biochemical/physiological methods for characterization and identification. For all species, MALDI-TOF can now be used as a diagnostic tool. As control and if MALDI-TOF equipment is not at hand, PCR-based specific detection is possible for Pasteurella multocida, Actinobacillus pleuropneumoniae, [Haemophilus] parasuis, Mannheimia haemolytica, Avibacterium paragallinarum, Gallibacterium anatis, Haemophilus influenzae, and Aggregatibacter actinomycetemcomitans. A lot of work has been directed towards identification of virulence factors and understanding host microbe interactions involved in disease.
Resumo:
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Resumo:
RATIONALE Changes in the pulmonary microbiota are associated with progressive respiratory diseases including chronic obstructive pulmonary disease. Whether there is a causal relationship between these changes and disease progression remains unknown. OBJECTIVE To investigate the link between an altered microbiota and disease, we utilized a model of chronic lung inflammation in specific pathogen free (SPF) mice and mice depleted of microbiota by antibiotic treatment or devoid of a microbiota (axenic). METHODS Mice were challenged with LPS/elastase intranasally over 4 weeks, resulting in a chronically inflamed and damaged lung. The ensuing cellular infiltration, histological damage and decline in lung function were quantified. MEASUREMENTS AND MAIN RESULTS Similar to human disease, the composition of the pulmonary microbiota was altered in disease animals. We found that the microbiota richness and diversity were decreased in LPS/Elastase-treated mice, with an increased representation of the genera Pseudomonas, Lactobacillus and a reduction in Prevotella. Moreover, the microbiota was implicated in disease development as mice depleted of microbiota exhibited an improvement in lung function, reduction in airway inflammation, decrease in lymphoid neogenesis and auto-reactive antibody responses. The absence of microbial cues also markedly decreased the production of IL-17A, whilst intranasal transfer of fluid enriched with the pulmonary microbiota isolated from diseased mice enhanced IL-17A production in the lungs of antibiotic treated or axenic recipients. Finally, in mice harboring a microbiota, neutralizing IL-17A dampened inflammation and restored lung function. CONCLUSIONS Collectively, our data indicate that host-microbial cross-talk promotes inflammation and could underlie the chronicity of inflammatory lung diseases.
Resumo:
The cardiac voltage-gated Na(+) channel, Na(V)1.5, is responsible for the upstroke of the action potential in cardiomyocytes and for efficient propagation of the electrical impulse in the myocardium. Even subtle alterations of Na(V)1.5 function, as caused by mutations in its gene SCN5A, may lead to many different arrhythmic phenotypes in carrier patients. In addition, acquired malfunctions of Na(V)1.5 that are secondary to cardiac disorders such as heart failure and cardiomyopathies, may also play significant roles in arrhythmogenesis. While it is clear that the regulation of Na(V)1.5 protein expression and function tightly depends on genetic mechanisms, recent studies have demonstrated that Na(V)1.5 is the target of various post-translational modifications that are pivotal not only in physiological conditions, but also in disease. In this review, we examine the recent literature demonstrating glycosylation, phosphorylation by Protein Kinases A and C, Ca(2+)/Calmodulin-dependent protein Kinase II, Phosphatidylinositol 3-Kinase, Serum- and Glucocorticoid-inducible Kinases, Fyn and Adenosine Monophosphate-activated Protein Kinase, methylation, acetylation, redox modifications, and ubiquitylation of Na(V)1.5. Modern and sensitive mass spectrometry approaches, applied directly to channel proteins that were purified from native cardiac tissues, have enabled the determination of the precise location of post-translational modification sites, thus providing essential information for understanding the mechanistic details of these regulations. The current challenge is first, to understand the roles of these modifications on the expression and the function of Na(V)1.5, and second, to further identify other chemical modifications. It is postulated that the diversity of phenotypes observed with Na(V)1.5-dependent disorders may partially arise from the complex post-translational modifications of channel protein components.
Resumo:
PURPOSE The Geographic Atrophy Progression (GAP) study was designed to assess the rate of geographic atrophy (GA) progression and to identify prognostic factors by measuring the enlargement of the atrophic lesions using fundus autofluorescence (FAF) and color fundus photography (CFP). DESIGN Prospective, multicenter, noninterventional natural history study. PARTICIPANTS A total of 603 participants were enrolled in the study; 413 of those had gradable lesion data from FAF or CFP, and 321 had gradable lesion data from both FAF and CFP. METHODS Atrophic lesion areas were measured by FAF and CFP to assess lesion progression over time. Lesion size assessments and best-corrected visual acuity (BCVA) were conducted at screening/baseline (day 0) and at 3 follow-up visits: month 6, month 12, and month 18 (or early exit). MAIN OUTCOME MEASURES The GA lesion progression rate in disease subgroups and mean change from baseline visual acuity. RESULTS Mean (standard error) lesion size changes from baseline, determined by FAF and CFP, respectively, were 0.88 (0.1) and 0.78 (0.1) mm(2) at 6 months, 1.85 (0.1) and 1.57 (0.1) mm(2) at 12 months, and 3.14 (0.4) and 3.17 (0.5) mm(2) at 18 months. The mean change in lesion size from baseline to month 12 was significantly greater in participants who had eyes with multifocal atrophic spots compared with those with unifocal spots (P < 0.001) and those with extrafoveal lesions compared with those with foveal lesions (P = 0.001). The mean (standard deviation) decrease in visual acuity was 6.2 ± 15.6 letters for patients with image data available. Atrophic lesions with a diffuse (mean 0.95 mm(2)) or banded (mean 1.01 mm(2)) FAF pattern grew more rapidly by month 6 compared with those with the "none" (mean, 0.13 mm(2)) and focal (mean, 0.36 mm(2)) FAF patterns. CONCLUSIONS Although differences were observed in mean lesion size measurements using FAF imaging compared with CFP, the measurements were highly correlated with one another. Significant differences were found in lesion progression rates in participants stratified by hyperfluorescence pattern subtype. This large GA natural history study provides a strong foundation for future clinical trials.