77 resultados para Capillary Permeability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of high-resolution CZE for determination of carbohydrate-deficient transferrin (CDT) in human serum based on internal and external quality data gathered over a 10-year period is reported. The assay comprises mixing of serum with a Fe(III) ion-containing solution prior to analysis of the iron saturated mixture in a dynamically double-coated capillary using a commercial buffer at alkaline pH. CDT values obtained with a human serum of a healthy individual and commercial quality control sera are shown to vary less than 10%. Values of a control from a specific lot were found to slowly decrease as function of time (less than 10% per year). Furthermore, due to unknown reasons, gradual changes in the monitored pattern around pentasialo-transferrin were detected, which limit the use of commercial control sera of the same lot to less than 2 years. Analysis of external quality control sera revealed correct classification of the samples over the entire 10-year period. Data obtained compare well with those of HPLC and CZE assays of other laboratories. The data gathered over a 10-year period demonstrate the robustness of the high-resolution CZE assay. This is the first account of a CZE-based CDT assay with complete internal and external quality assessment over an extended time period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Threo-methylphenidate is a chiral psychostimulant drug widely prescribed to treat attention-deficit hyperactivity disorder in children and adolescents. An enantioselective CE-based assay with head-column field-amplified sample stacking for analysis of threo-methylphenidate enantiomers in liquid/liquid extracts of oral fluid is described. Analytes are electrokinetically injected across a short water plug placed at the capillary inlet and become stacked at the interface between plug and buffer. Enantiomeric separation occurs within a few minutes in a pH 3.0 phosphate/triethanolamine buffer containing 20 mg/mL (2-hydroxypropyl)-β-CD as chiral selector. The assay with six point multilevel internal calibration provides a linear response for each enantiomer in the 10-200 ng/mL concentration range, is simple, inexpensive, and reproducible, and has an LOQ of 5 ng/mL. It was applied to oral fluid patient samples that were collected up to 12 h after intake of an immediate release tablet and two different extended release formulations with racemic methylphenidate. Drug profiles could thereby be assessed in a stereoselective way. Almost no levorotary threo-methylphenidate enantiomer was detected after intake of the two extended release formulations, whereas this enantiomer was detected during the first 2.5 h after intake of the immediate release preparation. The noninvasive collection of oral fluid is an attractive alternative to plasma for the monitoring of methylphenidate exposure in the pediatric community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution capillary zone electrophoresis in the routine arena with stringent quality assurance is employed for the determination of carbohydrate-deficient transferrin in human serum. The assay comprises mixing of human serum with a Fe(III) -containing solution prior to analysis of the iron-saturated mixture in a dynamically double-coated capillary using a commercial buffer at alkaline pH. In contrast to other assays, it provides sufficient resolution for proper recognition of genetic transferrin variants. Analysis of 7290 patient sera revealed 166 isoform patterns that could be assigned to genetic variants, namely, 109 BC, 53 CD, one BD and three CC variants. Several subtypes of transferrin D can be distinguished as they have large enough differences in pI values. Subtypes of transferrin C and B cannot be resolved. However, analysis of the detection time ratios of tetrasialo isoforms of transferrin BC and transferrin CD variants revealed multimodal frequency histograms, indicating the presence of subtypes of transferrin C, B and D. The data gathered over 11 years demonstrate the robustness of the high-resolution capillary zone electrophoresis assay. This is the first account of a capillary zone electrophoresis based carbohydrate-deficient transferrin assay with a broad overview on transferrin isoform patterns associated with genetic transferrin variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CZE-based assays for carbohydrate-deficient transferrin (CDT) in which serum is mixed with an Fe(III) ion-containing solution prior to analysis are effective approaches for the determination of CDT in patient samples. Sera of patients with progressed diseases, however, are prone to interferences comigrating with transferrin (Tf) that prevent the proper determination of CDT by CZE in these samples. The need of a simple and economic approach to immunoextract Tf from human serum prompted us to investigate the use of a laboratory-made anti-Tf spin column containing polyclonal rabbit anti-human Tf antibodies linked to Sepharose 4 Fast Flow beads. This article reports extraction column manufacturing and column characterization with sera having normal and elevated CDT levels. The developed procedure was applied to a number of relevant hepatology and dialysis patient samples and could thereby be shown to represent an effective method for extraction and concentration of all Tf isoforms. Furthermore, lipemic sera were delipidated using a mixture of diisopropyl ether and butanol prior to immunoextraction. CDT could unambiguously be determined in all pretreated samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of initial sample distribution on separation and focusing of analytes in a pH 3–11 gradient formed by 101 biprotic carrier ampholytes under concomitant electroosmotic displacement was studied by dynamic high-resolution computer simulation. Data obtained with application of the analytes mixed with the carrier ampholytes (as is customarily done), as a short zone within the initial carrier ampholyte zone, sandwiched between zones of carrier ampholytes, or introduced before or after the initial carrier ampholyte zone were compared. With sampling as a short zone within or adjacent to the carrier ampholytes, separation and focusing of analytes is shown to proceed as a cationic, anionic, or mixed process and separation of the analytes is predicted to be much faster than the separation of the carrier components. Thus, after the initial separation, analytes continue to separate and eventually reach their focusing locations. This is different to the double-peak approach to equilibrium that takes place when analytes and carrier ampholytes are applied as a homogenous mixture. Simulation data reveal that sample application between two zones of carrier ampholytes results in the formation of a pH gradient disturbance as the concentration of the carrier ampholytes within the fluid element initially occupied by the sample will be lower compared to the other parts of the gradient. As a consequence thereof, the properties of this region are sample matrix dependent, the pH gradient is flatter, and the region is likely to represent a conductance gap (hot spot). Simulation data suggest that sample placed at the anodic side or at the anodic end of the initial carrier ampholyte zone are the favorable configurations for capillary isoelectric focusing with electroosmotic zone mobilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ketamine and norketamine are being transported across the blood brain barrier and are also entering from blood into cerebrospinal fluid (CSF). Enantioselective distributions of these compounds in brain and CSF have never been determined. The enantioselective CE based assay previously developed for equine plasma was adapted to the analysis of these compounds in equine brain via use of an acidic pre-extraction of interferences prior to liquid/liquid extraction at alkaline pH. CSF can be treated as plasma. With 100 mg of brain tissue and 0.5 mL of CSF or plasma, assay conditions for up to 30 nmol/g and 6 μM, respectively, of each enantiomer with LOQs of 0.5 nmol/g and 0.1 μM, respectively, were established and the assays were applied to equine samples. CSF and plasma samples analyzed stemmed from anesthetized patient horses and brain, CSF and plasma were obtained from anesthetized horses that were euthanized with an overdose of pentobarbital. Data obtained indicate that ketamine and norketamine enantiomers are penetrating into brain and CSF with those of ketamine being more favorably transported than norketamine, whereas metabolites of norketamine are hindered. More work is required to properly investigate possible stereoselectivities of the ketamine metabolism and transport of metabolites from blood into brain tissue and CSF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS To investigate the prognostic significance of macular capillary drop-out and previous panretinal laser photocoagulation in diabetic macular oedema treated with intravitreal ranibizumab. METHODS Retrospective observational case series. Treatment-naive patients with diabetic macular oedema that had been treated with intravitreal ranibizumab as per the RESTORE study protocol for at least 12 months were included. Some patients (n=15) had previous panretinal laser photocoagulation. Best-corrected visual acuity and central retina thickness were recorded monthly. The foveal avascular zone and the perifoveal capillaries were quantitatively and qualitatively assessed on fluorescein angiography on two occasions during the observational period. RESULTS From the 46 eyes (46 patients) in this study, 13 (28%) had evidence of perifoveal capillary drop-out. Central retinal thickness was significantly thinner at baseline (p=0.02) and throughout the study period in these eyes compared with those with normal perifoveal capillaries. Both groups responded with a significant gain of best-corrected visual acuity to ranibizumab treatment (7.6±3.3 and 6.3±1.3 ETDRS letters, respectively). Eyes with previous panretinal laser photocoagulation displayed a comparable final outcome regarding function and morphology, requiring a similar intensity of intravitreal injections. CONCLUSIONS Perifoveal capillary drop-out did not limit the gain of visual acuity from intravitreal ranibizumab treatment. The reduction of central retina thickness was similar to that seen in eyes with normal perifoveal capillaries. Central retinal thickness in eyes with perifoveal capillary drop-out was generally reduced. However, this did not affect their benefit from treatment. Ranibizumab did not increase the amount of perifoveal capillary loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes of porosity, permeability, and tortuosity due to physical and geochemical processes are of vital importance for a variety of hydrogeological systems, including passive treatment facilities for contaminated groundwater, engineered barrier systems (EBS), and host rocks for high-level nuclear waste (HLW) repositories. Due to the nonlinear nature and chemical complexity of the problem, in most cases, it is impossible to verify reactive transport codes analytically, and code intercomparisons are the most suitable method to assess code capabilities and model performance. This paper summarizes model intercomparisons for six hypothetical scenarios with generally increasing geochemical or physical complexity using the reactive transport codes CrunchFlow, HP1, MIN3P, PFlotran, and TOUGHREACT. Benchmark problems include the enhancement of porosity and permeability through mineral dissolution, as well as near complete clogging due to localized mineral precipitation, leading to reduction of permeability and tortuosity. Processes considered in the benchmark simulations are advective-dispersive transport in saturated media, kinetically controlled mineral dissolution-precipitation, and aqueous complexation. Porosity changes are induced by mineral dissolution-precipitation reactions, and the Carman-Kozeny relationship is used to describe changes in permeability as a function of porosity. Archie’s law is used to update the tortuosity and the pore diffusion coefficient as a function of porosity. Results demonstrate that, generally, good agreement is reached amongst the computer models despite significant differences in model formulations. Some differences are observed, in particular for the more complex scenarios involving clogging; however, these differences do not affect the interpretation of system behavior and evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12–20 cm long, 5 cmdiameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium–iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2–6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, inwhich iodide enrichmentwas up to 180 mg/kgwater, compared to 0.5 mg/kgwater in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM The aim was to elucidate whether essential hypertension is associated with altered capillary morphology and density and to what extent exercise training can normalize these parameters. METHODS To investigate angiogenesis and capillary morphology in essential hypertension, muscle biopsies were obtained from m. vastus lateralis in subjects with essential hypertension (n = 10) and normotensive controls (n = 11) before and after 8 weeks of aerobic exercise training. Morphometry was performed after transmission electron microscopy, and protein levels of several angioregulatory factors were determined. RESULTS At baseline, capillary density and capillary-to-fibre ratio were not different between the two groups. However, the hypertensive subjects had 9% lower capillary area (12.7 ± 0.4 vs. 13.9 ± 0.2 μm(2)) and tended to have thicker capillary basement membranes (399 ± 16 vs. 358 ± 13 nm; P = 0.094) than controls. Protein expression of vascular endothelial growth factor (VEGF), VEGF receptor-2 and thrombospondin-1 were similar in normotensive and hypertensive subjects, but tissue inhibitor of matrix metalloproteinase was 69% lower in the hypertensive group. After training, angiogenesis was evident by 15% increased capillary-to-fibre ratio in the hypertensive subjects only. Capillary area and capillary lumen area were increased by 7 and 15% in the hypertensive patients, whereas capillary basement membrane thickness was decreased by 17% (P < 0.05). VEGF expression after training was increased in both groups, whereas VEGF receptor-2 was decreased by 25% in the hypertensive patients(P < 0.05). CONCLUSION Essential hypertension is associated with decreased lumen area and a tendency for increased basement membrane thickening in capillaries of skeletal muscle. Exercise training may improve the diffusion conditions in essential hypertension by altering capillary structure and capillary number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbeam radiation therapy (MRT) is a new form of preclinical radiotherapy using quasi-parallel arrays of synchrotron X-ray microbeams. While the deposition of several hundred Grays in the microbeam paths, the normal brain tissues presents a high tolerance which is accompanied by the permanence of apparently normal vessels. Conversely, the efficiency of MRT on tumor growth control is thought to be related to a preferential damaging of tumor blood vessels. The high resistance of the healthy vascular network was demonstrated in different animal models by in vivo biphoton microscopy, magnetic resonance imaging, and histological studies. While a transient increase in permeability was shown, the structure of the vessels remained intact. The use of a chick chorioallantoic membrane at different stages of development showed that the damages induced by microbeams depend on vessel maturation. In vivo and ultrastructural observations showed negligible effects of microbeams on the mature vasculature at late stages of development; nevertheless a complete destruction of the immature capillary plexus was found in the microbeam paths. The use of MRT in rodent models revealed a preferential effect on tumor vessels. Although no major modification was observed in the vasculature of normal brain tissue, tumors showed a denudation of capillaries accompanied by transient increased permeability followed by reduced tumor perfusion and finally, a decrease in number of tumor vessels. Thus, MRT is a very promising treatment strategy with pronounced tumor control effects most likely based on the anti-vascular effects of MRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pharmacokinetic and pharmacodynamic properties of a chiral drug can significantly differ between application of the racemate and single enantiomers. During drug development, the characteristics of candidate compounds have to be assessed prior to clinical testing. Since biotransformation significantly influences drug actions in an organism, metabolism studies represent a crucial part of such tests. Hence, an optimized and economical capillary electrophoretic method for on-line studies of the enantioselective drug metabolism mediated by cytochrome P450 enzymes was developed. It comprises a diffusion-based procedure, which enables mixing of the enzyme with virtually any compound inside the nanoliter-scale capillary reactor and without the need of additional optimization of mixing conditions. For CYP3A4, ketamine as probe substrate and highly sulfated γ-cyclodextrin as chiral selector, improved separation conditions for ketamine and norketamine enantiomers compared to a previously published electrophoretically mediated microanalysis method were elucidated. The new approach was thoroughly validated for the CYP3A4-mediated N-demethylation pathway of ketamine and applied to the determination of its kinetic parameters and the inhibition characteristics in presence of ketoconazole and dexmedetomidine. The determined parameters were found to be comparable to literature data obtained with different techniques. The presented method constitutes a miniaturized and cost-effective tool, which should be suitable for the assessment of the stereoselective aspects of kinetic and inhibition studies of cytochrome P450-mediated metabolic steps within early stages of the development of a new drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer simulation study describing the electrophoretic separation and migration of methadone enantiomers in presence of free and immobilized (2-hydroxypropyl)-β-CD is presented. The 1:1 interaction of methadone with the neutral CD was simulated by using experimentally determined mobilities and complexation constants for the complexes in a low-pH BGE comprising phosphoric acid and KOH. The use of complex mobilities represents free solution conditions with the chiral selector being a buffer additive, whereas complex mobilities set to zero provide data that mimic migration and separation with the chiral selector being immobilized, that is CEC conditions in absence of unspecific interaction between analytes and the chiral stationary phase. Simulation data reveal that separations are quicker, electrophoretic displacement rates are reduced, and sensitivity is enhanced in CEC with on-column detection in comparison to free solution conditions. Simulation is used to study electrophoretic analyte behavior at the interface between sample and the CEC column with the chiral selector (analyte stacking) and at the rear end when analytes leave the environment with complexation (analyte destacking). The latter aspect is relevant for off-column analyte detection in CEC and is described here for the first time via the dynamics of migrating analyte zones. Simulation provides insight into means to counteract analyte dilution at the column end via use of a BGE with higher conductivity. Furthermore, the impact of EOF on analyte migration, separation, and detection for configurations with the selector zone being displaced or remaining immobilized under buffer flow is simulated. In all cases, the data reveal that detection should occur within or immediately after the selector zone.