78 resultados para CELL LOSS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Small-cell lung cancer (SCLC) is a highly vascularized tumor. ASA404 is a tumor vascular disrupting agent. This is the first trial to report the effects of combining chemotherapy with ASA404 in SCLC. METHODS Patients with untreated metastatic SCLC were treated with carboplatin (area under curve, 6) plus paclitaxel (175 mg/m(2)) plus ASA404 (1800 mg/m(2)) on day 1 every 21 days for up to 6 cycles. The primary endpoint was the progression-free survival (PFS) rate at 24 weeks. RESULTS Median age was 61 years; 53% were women, 41% had weight loss; and 96% had a performance status of 0-1. Twelve patients completed all 6 cycles, and most adverse events were related to chemotherapy. Median PFS and time to progression were 7.0 months (95% CI, 5.7-9.4 months) and 7.5 months (95% CI, 5.7-9.4 months), respectively. The progression-free survival (PFS) rate at 24 weeks was 41% (95% CI, 18%-65%). The overall response rate was 94%. The median overall survival time was 14.2 months (95% CI, 8.2-16.0 months) and 1-year survival was 57%. The median follow-up time was 17.7 months. Due to negative results with ASA404 in non-small-cell lung cancer trials, the trial was stopped prematurely after 17 of 56 planned patients were being accrued. CONCLUSIONS This is the first report of a clinical trial with a vascular disrupting agent in SCLC. No unexpected toxicity was observed. PFS was not prolonged with carboplatin and paclitaxel plus ASA404.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of p53 is considered to allow progression of colorectal tumors from the adenoma to the carcinoma stage. Using mice with an intestinal epithelial cell (IEC)-specific p53 deletion, we demonstrate that loss of p53 alone is insufficient to initiate intestinal tumorigenesis but markedly enhances carcinogen-induced tumor incidence and leads to invasive cancer and lymph node metastasis. Whereas p53 controls DNA damage and IEC survival during the initiation stage, loss of p53 during tumor progression is associated with increased intestinal permeability, causing formation of an NF-κB-dependent inflammatory microenvironment and the induction of epithelial-mesenchymal transition. Thus, we propose a p53-controlled tumor-suppressive function that is independent of its well-established role in cell-cycle regulation, apoptosis, and senescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the majority of cells, the integrity of the plasmalemma is recurrently compromised by mechanical or chemical stress. Serum complement or bacterial pore-forming toxins can perforate the plasma membrane provoking uncontrolled Ca(2+) influx, loss of cytoplasmic constituents and cell lysis. Plasmalemmal blebbing has previously been shown to protect cells against bacterial pore-forming toxins. The activation of the P2X7 receptor (P2X7R), an ATP-gated trimeric membrane cation channel, triggers Ca(2+) influx and induces blebbing. We have investigated the role of the P2X7R as a regulator of plasmalemmal protection after toxin-induced membrane perforation caused by bacterial streptolysin O (SLO). Our results show that the expression and activation of the P2X7R furnishes cells with an increased chance of surviving attacks by SLO. This protective effect can be demonstrated not only in human embryonic kidney 293 (HEK) cells transfected with the P2X7R, but also in human mast cells (HMC-1), which express the receptor endogenously. In addition, this effect is abolished by treatment with blebbistatin or A-438079, a selective P2X7R antagonist. Thus blebbing, which is elicited by the ATP-mediated, paracrine activation of the P2X7R, is part of a cellular non-immune defense mechanism. It pre-empts plasmalemmal damage and promotes cellular survival. This mechanism is of considerable importance for cells of the immune system which carry the P2X7R and which are specifically exposed to toxin attacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beta1-integrins (beta1) represent cell surface receptors which mediate cell-matrix and cell-cell interactions. Fässler and Meyer described chimeric mice containing transgenic cells that express the LacZ gene instead of the beta1 gene. They observed beta1-negative cells in all germ layers at embryonic day E 8.5. Later in development, using a glucose phosphate isomerase assay of homogenized tissue samples, high levels of transgenic cells were found in skeletal muscle and gut, low levels in lung, heart, and kidney and none in the liver and spleen (Fässler and Meyer 1995). In order to study which cell types require beta1 during development of the primitive gut including its derivatives, chimeric fetuses containing 15 to 25% transgenic cells were obtained at days E 14.5 and E 15.5. They were LacZ (beta-galactosidase) stained "en bloc" and cross-sectioned head to tail. In esophagus, trachea, lung, stomach, hindgut, and the future urinary bladder, we observed various mesoderm-derived beta1-negative cells (e.g. fibroblasts, chondrocytes, endothelial cells, and smooth muscle cells) but no beta1-negative epithelial cells. Since the epithelia of lung, esophagus, trachea, stomach, hindgut, and urinary bladder are derived from the endodermal gut tube, we hypothesize that beta1 is essential for the development and/or survival of the epithelia of the fore- and hindgut and its derivatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-linked inhibitor of apoptosis protein (XIAP) has been identified as a potent regulator of innate immune responses, and loss-of-function mutations in XIAP cause the development of the X-linked lymphoproliferative syndrome type 2 (XLP-2) in humans. Using gene-targeted mice, we show that loss of XIAP or deletion of its RING domain lead to excessive cell death and IL-1β secretion from dendritic cells triggered by diverse Toll-like receptor stimuli. Aberrant IL-1β secretion is TNF dependent and requires RIP3 but is independent of cIAP1/cIAP2. The observed cell death also requires TNF and RIP3 but proceeds independently of caspase-1/caspase-11 or caspase-8 function. Loss of XIAP results in aberrantly elevated ubiquitylation of RIP1 outside of TNFR complex I. Virally infected Xiap−/− mice present with symptoms reminiscent of XLP-2. Our data show that XIAP controls RIP3-dependent cell death and IL-1β secretion in response to TNF, which might contribute to hyperinflammation in patients with XLP-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed and highly conserved RNA binding protein, has been linked to a variety of cellular processes from mRNA processing to DNA repair. However, the precise function of FUS is not well understood. Recently, mutations in the FUS gene have been identified in familial and sporadic patients of Amyotrophic Lateral Sclerosis, a fatal neurodegenerative disorder characterized by dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS that efficiently depletes the protein. In order to characterize this cell line, we have characterized the poly(A) fraction by RNA deep sequencing. Preliminary results show that FUS depletion affects both mRNA expression and alternative splicing. Upon FUS depletion 330 genes are downregulated and 81 are upregulated. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, we are currently characterizing how FUS depletion affects cell proliferation and survival. We find that the lack of FUS impairs cell proliferation but does not induce apoptosis. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine mastitis is a frequent problem in Swiss dairy herds. One of the main pathogens causing significant economic loss is Staphylococcus aureus. Various Staph. aureus genotypes with different biological properties have been described. Genotype B (GTB) of Staph. aureus was identified as the most contagious and one of the most prevalent strains in Switzerland. The aim of this study was to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB in Swiss dairy herds with an elevated yield-corrected herd somatic cell count (YCHSCC). One hundred dairy herds with a mean YCHSCC between 200,000 and 300,000cells/mL in 2010 were recruited and each farm was visited once during milking. A standardized protocol investigating demography, mastitis management, cow husbandry, milking system, and milking routine was completed during the visit. A bulk tank milk (BTM) sample was analyzed by real-time PCR for the presence of Staph. aureus GTB to classify the herds into 2 groups: Staph. aureus GTB-positive and Staph. aureus GTB-negative. Moreover, quarter milk samples were aseptically collected for bacteriological culture from cows with a somatic cell count ≥150,000cells/mL on the last test-day before the visit. The culture results allowed us to allocate the Staph. aureus GTB-negative farms to Staph. aureus non-GTB and Staph. aureus-free groups. Multivariable multinomial logistic regression models were built to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB. The prevalence of Staph. aureus GTB herds was 16% (n=16), whereas that of Staph. aureus non-GTB herds was 38% (n=38). Herds that sent lactating cows to seasonal communal pastures had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 10.2, 95% CI: 1.9-56.6), compared with herds without communal pasturing. Herds that purchased heifers had significantly higher odds of being infected with Staph. aureus GTB (rather than Staph. aureus non-GTB) compared with herds without purchase of heifers. Furthermore, herds that did not use udder ointment as supportive therapy for acute mastitis had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 8.5, 95% CI: 1.6-58.4) or Staph. aureus non-GTB (odds ratio: 6.1, 95% CI: 1.3-27.8) than herds that used udder ointment occasionally or regularly. Herds in which the milker performed unrelated activities during milking had significantly higher odds of being infected with Staph. aureus GTB (rather than Staph. aureus non-GTB) compared with herds in which the milker did not perform unrelated activities at milking. Awareness of 4 potential risk factors identified in this study guides implementation of intervention strategies to improve udder health in both Staph. aureus GTB and Staph. aureus non-GTB herds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatic angiosarcoma (AS) is a rare and highly aggressive tumor of endothelial origin with dismal prognosis. Studies of the molecular biology of AS and treatment options are limited as animal models are rare. We have previously shown that inducible knockout of Notch1 in mice leads to spontaneous formation of hepatic AS. The aims of this study were to: (1) establish and characterize a cell line derived from this murine AS, (2) identify molecular pathways involved in the pathogenesis and potential therapeutic targets, and (3) generate a tumor transplantation model. AS cells retained specific endothelial properties such as tube formation activity, as well as expression of CD31 and Von Willebrand factor. However, electron microscopy analysis revealed signs of dedifferentiation with loss of fenestrae and loss of contact inhibition. Microarray and pathway analysis showed substantial changes in gene expression and revealed activation of the Myc pathway. Exposing the AS cells to sorafenib reduced migration, filopodia dynamics, and cell proliferation but did not induce apoptosis. In addition, sorafenib suppressed ERK phosphorylation and expression of cyclin D2. Injection of AS cells into NOD/SCID mice resulted in formation of undifferentiated tumors, confirming the tumorigenic potential of these cells. In summary, we established and characterized a murine model of spontaneous AS formation and hepatic AS cell lines as a useful in vitro tool. Our data demonstrate antitumor activity of sorafenib in AS cells with potent inhibition of migration, filopodia formation, and cell proliferation, supporting further evaluation of sorafenib as a novel treatment strategy. In addition, AS cell transplantation provides a subcutaneous tumor model useful for in vivo preclinical drug testing.Laboratory Investigation advance online publication, 24 November 2014; doi:10.1038/labinvest.2014.141.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of appetite and ensuing weight loss is a key feature of severe illnesses. Protein-energy malnutrition (PEM) contributes significantly to the adverse outcome of these conditions. Pharmacological interventions to target appetite stimulation have little efficacy but considerable side effects. Therefore nutritional therapy appears to be the logical step to combat inadequate nutrition. However, clinical trial data demonstrating benefits are sparse and there is no current established standard algorithm for use of nutritional support in malnourished, acutely ill medical inpatients. Recent high-quality evidence from critical care demonstrating harmful effects when parenteral nutritional support is used indiscriminately has led to speculation that loss of appetite in the acute phase of illness is indeed an adaptive, protective response that improves cell recycling (autophagy) and detoxification. Outside critical care, there is an important gap in high quality clinical trial data shedding further light on these important issues. The selection, timing, and doses of nutrition should be evaluated as carefully as with any other therapeutic intervention, with the aim of maximising efficacy and minimising adverse effects and costs. In light of the current controversy, a reappraisal of how nutritional support should be used in acutely ill medical inpatients outside critical care is urgently required. The aim of this review is to discuss current pathophysiological concepts of PEM and to review the current evidence for the efficacy of nutritional support regarding patient outcomes when used in an acutely ill medical patient population outside critical care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extravasation of CD4(+) effector/memory T cells (TEM cells) across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis (MS). Endothelial ICAM-1 and ICAM-2 are essential for CD4(+) TEM cell crawling on the BBB prior to diapedesis. Here, we investigated the influence of cell surface levels of endothelial ICAM-1 in determining the cellular route of CD4(+) TEM -cell diapedesis across cytokine treated primary mouse BBB endothelial cells under physiological flow. Inflammatory conditions, inducing high levels of endothelial ICAM-1, promoted rapid initiation of transcellular diapedesis of CD4(+) T cells across the BBB, while intermediate levels of endothelial ICAM-1 favored paracellular CD4(+) T-cell diapedesis. Importantly, the route of T-cell diapedesis across the BBB was independent of loss of BBB barrier properties. Unexpectedly, a low number of CD4(+) TEM cells was found to cross the inflamed BBB in the absence of endothelial ICAM-1 and ICAM-2 via an obviously alternatively regulated transcellular pathway. In vivo, this translated to the development of ameliorated EAE in ICAM-1(null) //ICAM-2(-/-) C57BL/6J mice. Taken together, our study demonstrates that cell surface levels of endothelial ICAM-1 rather than the inflammatory stimulus or BBB integrity influence the pathway of T-cell diapedesis across the BBB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int-/-) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlorophyll (chl) breakdown during senescence is an integral part of plant development and leads to the accumulation of colorless catabolites. The loss of green pigment is due to an oxygenolytic opening of the porphyrin macrocycle of pheophorbide (pheide) a followed by a reduction to yield a fluorescent chl catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase (PaO) and red chl catabolite reductase. PaO activity is found only during senescence, hence PaO seems to be a key regulator of chl catabolism. Whereas red chl catabolite reductase has been cloned, the nature of PaO has remained elusive. Here we report on the identification of the PaO gene of Arabidopsis thaliana (AtPaO). AtPaO is a Rieske-type iron–sulfur cluster-containing enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize. Biochemical properties of recombinant AtPaO were identical to PaO isolated from a natural source. Production of fluorescent chl catabolite-1 required ferredoxin as an electron source and both substrates, pheide a and molecular oxygen. By using a maize lls1 mutant, the in vivo function of PaO, i.e., degradation of pheide a during senescence, could be confirmed. Thus, lls1 leaves stayed green during dark incubation and accumulated pheide a that caused a light-dependent lesion mimic phenotype. Whereas proteins were degraded similarly in wild type and lls1, a chl-binding protein was selectively retained in the mutant. PaO expression correlated positively with senescence, but the enzyme appeared to be post-translationally regulated as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND To analyze the impact of weight loss before and during chemoradiation on survival outcomes in patients with locally advanced head and neck cancer. METHODS From 07/1994-07/2000 a total of 224 patients with squamous cell carcinoma of the head and neck were randomized to either hyperfractionated radiation therapy alone or the same radiation therapy combined with two cycles of concomitant cisplatin. The primary endpoint was time to any treatment failure (TTF); secondary endpoints were locoregional recurrence-free survival (LRRFS), distant metastasis-free survival (DMFS) and overall survival (OS). Patient weight was measured 6 months before treatment, at treatment start and treatment end. RESULTS The proportion of patients with >5% weight loss was 32% before, and 51% during treatment, and the proportion of patients with >10% weight loss was 12% before, and 17% during treatment. After a median follow-up of 9.5 years (range, 0.1 - 15.4 years) weight loss before treatment was associated with decreased TTF, LRRFS, DMFS, cancer specific survival and OS in a multivariable analysis. However, weight loss during treatment was not associated with survival outcomes. CONCLUSIONS Weight loss before and during chemoradiation was commonly observed. Weight loss before but not during treatment was associated with worse survival.