80 resultados para Automatic pistols
Resumo:
Extraction of both pelvic and femoral surface models of a hip joint from CT data for computer-assisted pre-operative planning of hip arthroscopy is addressed. We present a method for a fully automatic image segmentation of a hip joint. Our method works by combining fast random forest (RF) regression based landmark detection, atlas-based segmentation, with articulated statistical shape model (aSSM) based hip joint reconstruction. The two fundamental contributions of our method are: (1) An improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the atlas-based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Validation on 30 hip CT images show that our method achieves high performance in segmenting pelvis, left proximal femur, and right proximal femur surfaces with an average accuracy of 0.59 mm, 0.62 mm, and 0.58 mm, respectively.
Resumo:
In clinical practice, traditional X-ray radiography is widely used, and knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic approach for landmark detection and shape segmentation of both pelvis and femur in conventional AP X-ray images. Our approach is based on the framework of landmark detection via Random Forest (RF) regression and shape regularization via hierarchical sparse shape composition. We propose a visual feature FL-HoG (Flexible- Level Histogram of Oriented Gradients) and a feature selection algorithm based on trace radio optimization to improve the robustness and the efficacy of RF-based landmark detection. The landmark detection result is then used in a hierarchical sparse shape composition framework for shape regularization. Finally, the extracted shape contour is fine-tuned by a post-processing step based on low level image features. The experimental results demonstrate that our feature selection algorithm reduces the feature dimension in a factor of 40 and improves both training and test efficiency. Further experiments conducted on 436 clinical AP pelvis X-rays show that our approach achieves an average point-to-curve error around 1.2 mm for femur and 1.9 mm for pelvis.
Resumo:
In this paper, we propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. To detect landmarks, we estimate the displacements from some randomly sampled image patches to the (unknown) landmark positions, and then we integrate these predictions via a voting scheme. Our key contribution is a new algorithm for estimating these displacements. Different from other methods where each image patch independently predicts its displacement, we jointly estimate the displacements from all patches together in a data driven way, by considering not only the training data but also geometric constraints on the test image. The displacements estimation is formulated as a convex optimization problem that can be solved efficiently. Finally, we use the sparse shape composition model as the a priori information to regularize the landmark positions and thus generate the segmented shape contour. We validate our method on X-ray image datasets of three different anatomical structures: complete femur, proximal femur and pelvis. Experiments show that our method is accurate and robust in landmark detection, and, combined with the shape model, gives a better or comparable performance in shape segmentation compared to state-of-the art methods. Finally, a preliminary study using CT data shows the extensibility of our method to 3D data.
Resumo:
Extraction of surface models of a hip joint from CT data is a pre-requisite step for computer assisted diagnosis and planning (CADP) of periacetabular osteotomy (PAO). Most of existing CADP systems are based on manual segmentation, which is time-consuming and hard to achieve reproducible results. In this paper, we present a Fully Automatic CT Segmentation (FACTS) approach to simultaneously extract both pelvic and femoral models. Our approach works by combining fast random forest (RF) regression based landmark detection, multi-atlas based segmentation, with articulated statistical shape model (aSSM) based fitting. The two fundamental contributions of our approach are: (1) an improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the multi-atlas based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 6-fold cross validation. When the present approach was compared to manual segmentation, a mean segmentation accuracy of 0.40, 0.36, and 0.36 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. When the models derived from both segmentations were used to compute the PAO diagnosis parameters, a difference of 2.0 ± 1.5°, 2.1 ± 1.6°, and 3.5 ± 2.3% were found for anteversion, inclination, and acetabular coverage, respectively. The achieved accuracy is regarded as clinically accurate enough for our target applications.
Resumo:
In this paper, we propose a new method for stitching multiple fluoroscopic images taken by a C-arm instrument. We employ an X-ray radiolucent ruler with numbered graduations while acquiring the images, and the image stitching is based on detecting and matching ruler parts in the images to the corresponding parts of a virtual ruler. To achieve this goal, we first detect the regular spaced graduations on the ruler and the numbers. After graduation labeling, for each image, we have the location and the associated number for every graduation on the ruler. Then, we initialize the panoramic X-ray image with the virtual ruler, and we “paste” each image by aligning the detected ruler part on the original image, to the corresponding part of the virtual ruler on the panoramic image. Our method is based on ruler matching but without the requirement of matching similar feature points in pairwise images, and thus, we do not necessarily require overlap between the images. We tested our method on eight different datasets of X-ray images, including long bones and a complete spine. Qualitative and quantitative experiments show that our method achieves good results.
Resumo:
Point Distribution Models (PDM) are among the most popular shape description techniques and their usefulness has been demonstrated in a wide variety of medical imaging applications. However, to adequately characterize the underlying modeled population it is essential to have a representative number of training samples, which is not always possible. This problem is especially relevant as the complexity of the modeled structure increases, being the modeling of ensembles of multiple 3D organs one of the most challenging cases. In this paper, we introduce a new GEneralized Multi-resolution PDM (GEM-PDM) in the context of multi-organ analysis able to efficiently characterize the different inter-object relations, as well as the particular locality of each object separately. Importantly, unlike previous approaches, the configuration of the algorithm is automated thanks to a new agglomerative landmark clustering method proposed here, which equally allows us to identify smaller anatomically significant regions within organs. The significant advantage of the GEM-PDM method over two previous approaches (PDM and hierarchical PDM) in terms of shape modeling accuracy and robustness to noise, has been successfully verified for two different databases of sets of multiple organs: six subcortical brain structures, and seven abdominal organs. Finally, we propose the integration of the new shape modeling framework into an active shape-model-based segmentation algorithm. The resulting algorithm, named GEMA, provides a better overall performance than the two classical approaches tested, ASM, and hierarchical ASM, when applied to the segmentation of 3D brain MRI.
Resumo:
A fast and automatic method for radiocarbon analysis of aerosol samples is presented. This type of analysis requires high number of sample measurements of low carbon masses, but accepts precisions lower than for carbon dating analysis. The method is based on online Trapping CO2 and coupling an elemental analyzer with a MICADAS AMS by means of a gas interface. It gives similar results to a previously validated reference method for the same set of samples. This method is fast and automatic and typically provides uncertainties of 1.5–5% for representative aerosol samples. It proves to be robust and reliable and allows for overnight and unattended measurements. A constant and cross contamination correction is included, which indicates a constant contamination of 1.4 ± 0.2 μg C with 70 ± 7 pMC and a cross contamination of (0.2 ± 0.1)% from the previous sample. A Real-time online coupling version of the method was also investigated. It shows promising results for standard materials with slightly higher uncertainties than the Trapping online approach.
Resumo:
Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.
Resumo:
Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.
Resumo:
Automatic segmentation of the hip joint with pelvis and proximal femur surfaces from CT images is essential for orthopedic diagnosis and surgery. It remains challenging due to the narrowness of hip joint space, where the adjacent surfaces of acetabulum and femoral head are hardly distinguished from each other. This chapter presents a fully automatic method to segment pelvic and proximal femoral surfaces from hip CT images. A coarse-to-fine strategy was proposed to combine multi-atlas segmentation with graph-based surface detection. The multi-atlas segmentation step seeks to coarsely extract the entire hip joint region. It uses automatically detected anatomical landmarks to initialize and select the atlas and accelerate the segmentation. The graph based surface detection is to refine the coarsely segmented hip joint region. It aims at completely and efficiently separate the adjacent surfaces of the acetabulum and the femoral head while preserving the hip joint structure. The proposed strategy was evaluated on 30 hip CT images and provided an average accuracy of 0.55, 0.54, and 0.50 mm for segmenting the pelvis, the left and right proximal femurs, respectively.
Resumo:
The lexical items like and well can serve as discourse markers (DMs), but can also play numerous other roles, such as verb or adverb. Identifying the occurrences that function as DMs is an important step for language understanding by computers. In this study, automatic classifiers using lexical, prosodic/positional and sociolinguistic features are trained over transcribed dialogues, manually annotated with DM information. The resulting classifiers improve state-of-the-art performance of DM identification, at about 90% recall and 79% precision for like (84.5% accuracy, κ = 0.69), and 99% recall and 98% precision for well (97.5% accuracy, κ = 0.88). Automatic feature analysis shows that lexical collocations are the most reliable indicators, followed by prosodic/positional features, while sociolinguistic features are marginally useful for the identification of DM like and not useful for well. The differentiated processing of each type of DM improves classification accuracy, suggesting that these types should be treated individually.
Resumo:
This article discusses the detection of discourse markers (DM) in dialog transcriptions, by human annotators and by automated means. After a theoretical discussion of the definition of DMs and their relevance to natural language processing, we focus on the role of like as a DM. Results from experiments with human annotators show that detection of DMs is a difficult but reliable task, which requires prosodic information from soundtracks. Then, several types of features are defined for automatic disambiguation of like: collocations, part-of-speech tags and duration-based features. Decision-tree learning shows that for like, nearly 70% precision can be reached, with near 100% recall, mainly using collocation filters. Similar results hold for well, with about 91% precision at 100% recall.
Resumo:
Purpose In recent years, selective retina laser treatment (SRT), a sub-threshold therapy method, avoids widespread damage to all retinal layers by targeting only a few. While these methods facilitate faster healing, their lack of visual feedback during treatment represents a considerable shortcoming as induced lesions remain invisible with conventional imaging and make clinical use challenging. To overcome this, we present a new strategy to provide location-specific and contact-free automatic feedback of SRT laser applications. Methods We leverage time-resolved optical coherence tomography (OCT) to provide informative feedback to clinicians on outcomes of location-specific treatment. By coupling an OCT system to SRT treatment laser, we visualize structural changes in the retinal layers as they occur via time-resolved depth images. We then propose a novel strategy for automatic assessment of such time-resolved OCT images. To achieve this, we introduce novel image features for this task that when combined with standard machine learning classifiers yield excellent treatment outcome classification capabilities. Results Our approach was evaluated on both ex vivo porcine eyes and human patients in a clinical setting, yielding performances above 95 % accuracy for predicting patient treatment outcomes. In addition, we show that accurate outcomes for human patients can be estimated even when our method is trained using only ex vivo porcine data. Conclusion The proposed technique presents a much needed strategy toward noninvasive, safe, reliable, and repeatable SRT applications. These results are encouraging for the broader use of new treatment options for neovascularization-based retinal pathologies.