91 resultados para Appearing White-matter
Resumo:
The outcome of spinal surgery in dogs with absent voluntary motor function and nociception following intervertebral disc (IVD) herniation is highly variable, which likely attests to differences in the severity of spinal cord damage. This retrospective study evaluated the extent to which neurological signs correlated with histologically detected spinal cord damage in 60 dogs that were euthanased because of thoracolumbar IVD herniation. Clinical neurological grades correlated significantly with the extent of white matter damage (P<0.001). However, loss of nociception also occurred in 6/31 (19%) dogs with relatively mild histological changes. The duration of clinical signs, Schiff-Sherrington posture, loss of reflexes and pain on spinal palpation were not significantly associated with the severity of spinal cord damage. Although clinical-pathological correlation was generally good, some clinical signs frequently thought to indicate severe cord injury did not always correlate with the degree of cord damage, suggesting functional rather than structural impairment in some cases.
Resumo:
BACKGROUND Leukoencephalomyelopathy is an inherited neurodegenerative disorder that affects the white matter of the spinal cord and brain and is known to occur in the Rottweiler breed. Due to the lack of a genetic test for this disorder, post mortem neuropathological examinations are required to confirm the diagnosis. Leukoencephalopathy with brain stem and spinal cord involvement and elevated lactate levels is a rare, autosomal recessive disorder in humans that was recently described to have clinical features and magnetic resonance imaging (MRI) findings that are similar to the histopathologic lesions that define leukoencephalomyelopathy in Rottweilers. Leukoencephalopathy with brain stem and spinal cord involvement is caused by mutations in the DARS2 gene, which encodes a mitochondrial aspartyl-tRNA synthetase. The objective of this case report is to present the results of MRI and candidate gene analysis of a case of Rottweiler leukoencephalomyelopathy to investigate the hypothesis that leukoencephalomyelopathy in Rottweilers could serve as an animal model of human leukoencephalopathy with brain stem and spinal cord involvement. CASE PRESENTATION A two-and-a-half-year-old male purebred Rottweiler was evaluated for generalised progressive ataxia with hypermetria that was most evident in the thoracic limbs. MRI (T2-weighted) demonstrated well-circumscribed hyperintense signals within both lateral funiculi that extended from the level of the first to the sixth cervical vertebral body. A neurodegenerative disorder was suspected based on the progressive clinical course and MRI findings, and Rottweiler leukoencephalomyelopathy was subsequently confirmed via histopathology. The DARS2 gene was investigated as a causative candidate, but a sequence analysis failed to identify any disease-associated variants in the DNA sequence. CONCLUSION It was concluded that MRI may aid in the pre-mortem diagnosis of suspected cases of leukoencephalomyelopathy. Genes other than DARS2 may be involved in Rottweiler leukoencephalomyelopathy and may also be relevant in human leukoencephalopathy with brain stem and spinal cord involvement.
Resumo:
Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.
Resumo:
Since approximately two thirds of epileptic patients are non-eligible for surgery, local axonal fiber transections might be of particular interest for them. Micrometer to millimeter wide synchrotron-generated X-ray beamlets produced by spatial fractionation of the main beam could generate such fiber disruptions non-invasively. The aim of this work was to optimize irradiation parameters for the induction of fiber transections in the rat brain white matter by exposure to such beamlets. For this purpose, we irradiated cortex and external capsule of normal rats in the antero-posterior direction with a 4 mm×4 mm array of 25 to 1000 µm wide beamlets and entrance doses of 150 Gy to 500 Gy. Axonal fiber responses were assessed with diffusion tensor imaging and fiber tractography; myelin fibers were examined histopathologically. Our study suggests that high radiation doses (500 Gy) are required to interrupt axons and myelin sheaths. However, a radiation dose of 500 Gy delivered by wide minibeams (1000 µm) induced macroscopic brain damage, depicted by a massive loss of matter in fiber tractography maps. With the same radiation dose, the damage induced by thinner microbeams (50 to 100 µm) was limited to their paths. No macroscopic necrosis was observed in the irradiated target while overt transections of myelin were detected histopathologically. Diffusivity values were found to be significantly reduced. A radiation dose ≤ 500 Gy associated with a beamlet size of < 50 µm did not cause visible transections, neither on diffusion maps nor on sections stained for myelin. We conclude that a peak dose of 500 Gy combined with a microbeam width of 100 µm optimally induced axonal transections in the white matter of the brain.
Resumo:
BACKGROUND Statins have anti-inflammatory and immunomodulatory properties in addition to lipid-lowering effects. OBJECTIVES To report the 12-month extension of a phase II trial evaluating the efficacy, safety and tolerability of atorvastatin 40 mg/d added to interferon beta-1b (IFNB-1b) in relapsing-remitting multiple sclerosis (RRMS). METHODS In the randomized, multicenter, parallel-group, rater-blinded core study, 77 RRMS patients started IFNB-1b. At month three they were randomized 1∶1 to receive atorvastatin 40 mg/d or not in addition to IFNB-1b until month 15. In the subsequent extension study, patients continued with unchanged medication for another 12 months. Data at study end were compared to data at month three of the core study. RESULTS 27 of 72 patients that finished the core study entered the extension study. 45 patients were lost mainly due to a safety analysis during the core study including a recruitment stop for the extension study. The primary end point, the proportion of patients with new lesions on T2-weighted images was equal in both groups (odds ratio 1.926; 95% CI 0.265-14.0007; p = 0.51). All secondary endpoints including number of new lesions and total lesion volume on T2-weighted images, total number of Gd-enhancing lesions on T1-weighted images, volume of grey and white matter, EDSS, MSFC, relapse rate, number of relapse-free patients and neutralizing antibodies did not show significant differences either. The combination therapy was well tolerated. CONCLUSIONS Atorvastatin 40 mg/day in addition to IFNB-1b did not have any beneficial effects on RRMS compared to IFNB-1b monotherapy over a period of 24 months.
Resumo:
The nervous system is frequently affected in patients with the acquired immune deficiency syndrome (AIDS). In addition to opportunistic CNS infections and cerebral lymphomas, approx. 20% of the patients develop HIV-associated encephalopathies. Two major histopathological manifestations are observed. HIV leukoencephalopathy (progressive diffuse leukoencephalopathy) is characterized by a diffuse loss of myelin in the deep white matter of the cerebral and cerebellar hemispheres, with scattered multinucleated giant cells and microglia but scarce or absent inflammatory reaction. HIV encephalitis (multinucleated giant cell encephalitis) is associated with accumulations of multinucleated giant cells, inflammatory reaction and often focal necroses. In some patients, both patterns may overlap. In order to identify the HIV genome in the CNS, brain tissue from 27 patients was analyzed for the presence of HIV gag sequences using the polymerase chain reaction (PCR) and primers encoding a 109 base pair segment of the gag gene. Amplification of HIV gag succeeded in all 5 patients with clinical and histopathological evidence for HIV encephalopathy but was negative in the 20 AIDS patients with opportunistic bacterial, parasitic and/or viral infections or with cerebral lymphomas. These results strongly suggest that the evolution of histopathologically recognizable HIV-encephalopathies closely correlates with the presence and/or tissue concentration of HIV. Since there were no cases with amplified HIV DNA in the absence of HIV-associated tissue lesions, we conclude that harboring and replication of HIV in the CNS rapidly causes corresponding clinical and morphological changes of HIV-associated encephalopathies. In two children with severe HIV encephalomyelitis, large amounts of HIV gag and env transcripts were detected in affected areas of the brain and spinal cord by in situ hybridization.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The incidence of HIV encephalopathies was determined in an ongoing consecutive autopsy study. Among 345 patients who died from AIDS in Switzerland during 1981-1990, 68 (19%) showed morphological evidence of HIV encephalopathy. Two major histopathological manifestations were observed. Progressive diffuse leukoencephalopathy (PDL) was present in 33 cases and is characterized by a diffuse loss of myelin staining in the deep white matter of the cerebral and cerebellar hemispheres, with scattered multinucleated giant cells but little or no inflammatory reaction. Multinucleated giant cell encephalitis (MGCE) was diagnosed in 32 cases; it's hallmarks are accumulations of multinucleated giant cells with prominent inflammatory reaction and focal necroses. In 3 patients both types of lesions overlapped. Brain tissue from 27 patients was analyzed for the presence of HIV gag sequences using the polymerase chain reaction (PCR) with primers encoding a 109 base pair segment of the viral gene. Amplification succeeded in all patients with clinical and histopathological evidence for HIV encephalopathy but was absent in AIDS patients with opportunistic bacterial, parasitic and/or viral infections. Potential mechanisms by which HIV exerts it's adverse effects on the human CNS are discussed.
Resumo:
Multiple sclerosis (MS) is a chronic disease with an inflammatory and neurodegenerative pathology. Axonal loss and neurodegeneration occurs early in the disease course and may lead to irreversible neurological impairment. Changes in brain volume, observed from the earliest stage of MS and proceeding throughout the disease course, may be an accurate measure of neurodegeneration and tissue damage. There are a number of magnetic resonance imaging-based methods for determining global or regional brain volume, including cross-sectional (e.g. brain parenchymal fraction) and longitudinal techniques (e.g. SIENA [Structural Image Evaluation using Normalization of Atrophy]). Although these methods are sensitive and reproducible, caution must be exercised when interpreting brain volume data, as numerous factors (e.g. pseudoatrophy) may have a confounding effect on measurements, especially in a disease with complex pathological substrates such as MS. Brain volume loss has been correlated with disability progression and cognitive impairment in MS, with the loss of grey matter volume more closely correlated with clinical measures than loss of white matter volume. Preventing brain volume loss may therefore have important clinical implications affecting treatment decisions, with several clinical trials now demonstrating an effect of disease-modifying treatments (DMTs) on reducing brain volume loss. In clinical practice, it may therefore be important to consider the potential impact of a therapy on reducing the rate of brain volume loss. This article reviews the measurement of brain volume in clinical trials and practice, the effect of DMTs on brain volume change across trials and the clinical relevance of brain volume loss in MS.
Resumo:
BACKGROUND: Cortical gray matter thinning occurs during childhood due to pruning of inefficient synaptic connections and an increase in myelination. Preterms show alterations in brain structure, with prolonged maturation of the frontal lobes, smaller cortical volumes and reduced white matter volume. These findings give rise to the question if there is a differential influence of age on cortical thinning in preterms compared to controls. AIMS: To investigate the relationship between age and cortical thinning in school-aged preterms compared to controls. STUDY DESIGN AND OUTCOME MEASURES: The automated surface reconstruction software FreeSurfer was applied to obtain measurements of cortical thickness based on T1-weighted MRI images. SUBJECTS: Forty-one preterms (<32weeks gestational age and/or <1500g birth weight) and 30 controls were included in the study (7-12years). RESULTS: In preterms, age correlated negatively with cortical thickness in right frontal, parietal and inferior temporal regions. Furthermore, young preterms showed a thicker cortex compared to old preterms in bilateral frontal, parietal and temporal regions. In controls, age was not associated with cortical thickness. CONCLUSION: In preterms, cortical thinning still seems to occur between the age of 7 and 12years, mainly in frontal and parietal areas whereas in controls, a substantial part of cortical thinning appears to be completed before they reach the age of 7years. These data indicate slower cortical thinning in preterms than in controls.
Resumo:
Introduction: HIV-1 viral escape in the cerebrospinal fluid (CSF) despite viral suppression in plasma is rare [1,2]. We describe the case of a 50-year-old HIV-1 infected patient who was diagnosed with HIV-1 in 1995. Antiretroviral therapy (ART) was started in 1998 with a CD4 T cell count of 71 cells/ìL and HIV-viremia of 46,000 copies/mL. ART with zidovudine (AZT), lamivudine (3TC) and efavirenz achieved full viral suppression. After the patient had interrupted ART for two years, treatment was re-introduced with tenofovir (TDF), emtricitabin (FTC) and ritonavir boosted atazanavir (ATVr). This regimen suppressed HIV-1 in plasma for nine years and CD4 cells stabilized around 600 cells/ìL. Since July 2013, the patient complained about severe gait ataxia and decreased concentration. Materials and Methods: Additionally to a neurological examination, two lumbar punctures, a cerebral MRI and a neuropsycological test were performed. HIV-1 viral load in plasma and in CSF was quantified using Cobas TaqMan HIV-1 version 2.0 (Cobas Ampliprep, Roche diagnostic, Basel, Switzerland) with a detection limit of 20 copies/mL. Drug resistance mutations in HIV-1 reverse transcriptase and protease were evaluated using bulk sequencing. Results: The CSF in January 2014 showed a pleocytosis with 75 cells/ìL (100% mononuclear) and 1,184 HIV-1 RNA copies/mL, while HIV-1 in plasma was below 20 copies/mL. The resistance testing of the CSF-HIV-1 RNA showed two NRTI resistance-associated mutations (M184V and K65R) and one NNRTI resistance-associated mutation (K103N). The cerebral MRI showed increased signal on T2-weighted images in the subcortical and periventricular white matter, in the basal ganglia and thalamus. Four months after ART intensification with AZT, 3TC, boosted darunavir and raltegravir, the pleocytosis in CSF cell count normalized to 1 cell/ìL and HIV viral load was suppressed. The neurological symptoms improved; however, equilibrium disturbances and impaired memory persisted. The neuro-psychological evaluation confirmed neurocognitive impairments in executive functions, attention, working and nonverbal memory, speed of information processing, visuospatial abilities and motor skills. Conclusions: HIV-1 infected patients with neurological complaints prompt further investigations of the CSF including measurement of HIV viral load and genotypic resistance testing since isolated replication of HIV with drug resistant variants can rarely occur despite viral suppression in plasma. Optimizing ART by using drugs with improved CNS penetration may achieve viral suppression in CSF with improvement of neurological symptoms.
Resumo:
Abstract Within the field of neuroscientific research on second language learning, considerable attention has been devoted to functional and recently also structural changes related to second language acquisition. The present literature review summarizes studies that investigated structural changes related to bilingualism. Furthermore, as recent evidence has suggested that native-like exposure to a second language (i.e., a naturalistic learning setting or immersion) considerably impacts second language learning, all findings are reflected with respect to the learning environment. Aggregating the existing evidence, we conclude that structural changes in left inferior frontal and inferior parietal regions have been observed in studies on cortical gray matter changes, while the anterior parts of the corpus callosum have been repeatedly found to reflect bilingualism in studies on white matter (WM) connectivity. Regarding the learning environment, no cortical alterations can be attributed specifically to naturalistic or classroom learning. With regard to WM changes, one might tentatively propose that changes in IFOF and SLF are possibly more prominently observed in studies investigating bilinguals with a naturalistic learning experience. However, future studies are needed to replicate and strengthen the existing evidence and to directly test the impact of naturalistic exposure on structural brain plasticity.
Resumo:
BACKGROUND AND PURPOSE To assess the association of lesion location and risk of aspiration and to establish predictors of transient versus extended risk of aspiration after supratentorial ischemic stroke. METHODS Atlas-based localization analysis was performed in consecutive patients with MRI-proven first-time acute supratentorial ischemic stroke. Standardized swallowing assessment was carried out within 8±18 hours and 7.8±1.2 days after admission. RESULTS In a prospective, longitudinal analysis, 34 of 94 patients (36%) were classified as having acute risk of aspiration, which was extended (≥7 days) or transient (<7 days) in 17 cases. There were no between-group differences in age, sex, cause of stroke, risk factors, prestroke disability, lesion side, or the degree of age-related white-matter changes. Correcting for stroke volume and National Institutes of Health Stroke Scale with a multiple logistic regression model, significant adjusted odds ratios in favor of acute risk of aspiration were demonstrated for the internal capsule (adjusted odds ratio, 6.2; P<0.002) and the insular cortex (adjusted odds ratio, 4.8; P<0.003). In a multivariate model of extended versus transient risk of aspiration, combined lesions of the frontal operculum and insular cortex was the only significant independent predictor of poor recovery (adjusted odds ratio, 33.8; P<0.008). CONCLUSIONS Lesions of the insular cortex and the internal capsule are significantly associated with acute risk of aspiration after stroke. Combined ischemic infarctions of the frontal operculum and the insular cortex are likely to cause extended risk of aspiration in stroke patients, whereas risk of aspiration tends to be transient in subcortical stroke.
Resumo:
The brain is a complex neural network with a hierarchical organization and the mapping of its elements and connections is an important step towards the understanding of its function. Recent developments in diffusion-weighted imaging have provided the opportunity to reconstruct the whole-brain structural network in-vivo at a large scale level and to study the brain structural substrate in a framework that is close to the current understanding of brain function. However, methods to construct the connectome are still under development and they should be carefully evaluated. To this end, the first two studies included in my thesis aimed at improving the analytical tools specific to the methodology of brain structural networks. The first of these papers assessed the repeatability of the most common global and local network metrics used in literature to characterize the connectome, while in the second paper the validity of further metrics based on the concept of communicability was evaluated. Communicability is a broader measure of connectivity which accounts also for parallel and indirect connections. These additional paths may be important for reorganizational mechanisms in the presence of lesions as well as to enhance integration in the network. These studies showed good to excellent repeatability of global network metrics when the same methodological pipeline was applied, but more variability was detected when considering local network metrics or when using different thresholding strategies. In addition, communicability metrics have been found to add some insight into the integration properties of the network by detecting subsets of nodes that were highly interconnected or vulnerable to lesions. The other two studies used methods based on diffusion-weighted imaging to obtain knowledge concerning the relationship between functional and structural connectivity and about the etiology of schizophrenia. The third study integrated functional oscillations measured using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) as well as diffusion-weighted imaging data. The multimodal approach that was applied revealed a positive relationship between individual fluctuations of the EEG alpha-frequency and diffusion properties of specific connections of two resting-state networks. Finally, in the fourth study diffusion-weighted imaging was used to probe for a relationship between the underlying white matter tissue structure and season of birth in schizophrenia patients. The results are in line with the neurodevelopmental hypothesis of early pathological mechanisms as the origin of schizophrenia. The different analytical approaches selected in these studies also provide arguments for discussion of the current limitations in the analysis of brain structural networks. To sum up, the first studies presented in this thesis illustrated the potential of brain structural network analysis to provide useful information on features of brain functional segregation and integration using reliable network metrics. In the other two studies alternative approaches were presented. The common discussion of the four studies enabled us to highlight the benefits and possibilities for the analysis of the connectome as well as some current limitations.
Resumo:
Tick borne encephalitis virus (TBE) is an endemic infectious agent in northeastern Switzerland causing mainly meningoencephalomyelitis in dogs. We report a canine case of tick born meningoencephalomyelitis resulting in flaccid tetraplegia and, subsequently, fatal respiratory failure. Magnetic resonance imaging (MRI) demonstrated intra-axial bilateral, symmetric, and hyperintense lesions in T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) sequences affecting thalamus, basal nuclei, cerebral white matter and ventral horns of the caudal cervical spine. These radiological findings overlap those described during flavivirus encephalitis affecting human beings. These lesions in MRI and diffusion weighted images correlated with areas of vasogenic edema detected histopathologically. In endemic regions, clinicians should be aware that bilateral, symmetrical hyperintense thalamic lesions in T2WI can be suggestive of flavivirus infection in dogs with encephalitis
Resumo:
The Duffy antigen/receptor for chemokines, DARC, belongs to the family of atypical heptahelical chemokine receptors that do not couple to G proteins and therefore fail to transmit conventional intracellular signals. Here we show that during experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, the expression of DARC is upregulated at the blood-brain barrier. These findings are corroborated by the presence of a significantly increased number of subcortical white matter microvessels staining positive for DARC in human multiple sclerosis brains as compared to control tissue. Using an in vitro blood-brain barrier model we demonstrated that endothelial DARC mediates the abluminal to luminal transport of inflammatory chemokines across the blood-brain barrier. An involvement of DARC in experimental autoimmune encephalomyelitis pathogenesis was confirmed by the observed ameliorated experimental autoimmune encephalomyelitis in Darc(-/-) C57BL/6 and SJL mice, as compared to wild-type control littermates. Experimental autoimmune encephalomyelitis studies in bone marrow chimeric Darc(-/-) and wild-type mice revealed that increased plasma levels of inflammatory chemokines in experimental autoimmune encephalomyelitis depended on the presence of erythrocyte DARC. However, fully developed experimental autoimmune encephalomyelitis required the expression of endothelial DARC. Taken together, our data show a role for erythrocyte DARC as a chemokine reservoir and that endothelial DARC contributes to the pathogenesis of experimental autoimmune encephalomyelitis by shuttling chemokines across the blood-brain barrier.