65 resultados para swine pathology
Resumo:
Mast cells (MCs) are well known for their neoplastic transformation in solitary and multiple cutaneous mast cell tumours (MCTs), as well as visceral and systemic mastocytosis. Dogs have a unique risk of developing cutaneous MCTs, and they account for 7% to 21% of all canine skin tumours. The aetiology of canine MCTs is unknown but is probably multifactorial. This article reviews up-to-date knowledge on the pathogenesis, the clinical presentation, the clinical prognostic factors, the diagnostic workup including clinical staging, cytological findings, histological findings and the various grading systems which have been evaluated based on morphology, the assessment of proliferation markers and other factors such as vessel density. Furthermore, detailed information about current treatment protocols for canine cutaneous MCTs is provided.
Resumo:
This study investigated the attitudes and beliefs of pig farmers and hunters in Germany, Bulgaria and the western part of the Russian Federation towards reporting suspected cases of African swine fever (ASF). Data were collected using a web-based questionnaire survey targeting pig farmers and hunters in these three study areas. Separate multivariable logistic regression models identified key variables associated with each of the three binary outcome variables whether or not farmers would immediately report suspected cases of ASF, whether or not hunters would submit samples from hunted wild boar for diagnostic testing and whether or not hunters would report wild boar carcasses. The results showed that farmers who would not immediately report suspected cases of ASF are more likely to believe that their reputation in the local community would be adversely affected if they were to report it, that they can control the outbreak themselves without the involvement of veterinary services and that laboratory confirmation would take too long. The modelling also indicated that hunters who did not usually submit samples of their harvested wild boar for ASF diagnosis, and hunters who did not report wild boar carcasses are more likely to justify their behaviour through a lack of awareness of the possibility of reporting. These findings emphasize the need to develop more effective communication strategies targeted at pig farmers and hunters about the disease, its epidemiology, consequences and control methods, to increase the likelihood of early reporting, especially in the Russian Federation where the virus circulates
Resumo:
Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of pigs. The viral protein Npro of CSFV interferes with alpha- and beta-interferon (IFN-α/β) induction by promoting the degradation of interferon regulatory factor 3 (IRF3). During the establishment of the live attenuated CSF vaccine strain GPE-, Npro acquired a mutation that abolished its capacity to bind and degrade IRF3, rendering it unable to prevent IFN-α/β induction. In a previous study, we showed that the GPE- vaccine virus became pathogenic after forced serial passages in pigs, which was attributed to the amino acid substitutions T830A in the viral proteins E2 and V2475A and A2563V in NS4B. Interestingly, during the re-adaptation of the GPE- vaccine virus in pigs, the IRF3-degrading function of Npro was not recovered. Therefore, we examined whether restoring the ability of Npro to block IFN-α/β induction of both the avirulent and moderately virulent GPE--derived virus would enhance pathogenicity in pigs. Viruses carrying the N136D substitution in Npro regained the ability to degrade IRF3 and suppress IFN-α/β induction in vitro. In pigs, functional Npro significantly reduced the local IFN-α mRNA expression in lymphoid organs while it increased quantities of IFN-α/β in the circulation, and enhanced pathogenicity of the moderately virulent virus. In conclusion, the present study demonstrates that functional Npro influences the innate immune response at local sites of virus replication in pigs and contributes to pathogenicity of CSFV in synergy with viral replication.
Resumo:
The diagnostics of pancreatic neuroendocrine tumors (PanNEN) have changed in recent years especially concerning the World Health Organization (WHO) classification, TNM staging and grading. Furthermore, some new prognostic and predictive immunohistochemical markers have been introduced. Most progress, however, has been made in the molecular pathogenesis of these neoplasms. Using next generation sequencing techniques, the mammalian target of rapamycin (mTOR) pathway, hypoxia and epigenetic changes were identified as key players in tumorigenesis. In this article the most important developments of morphological as well as immunohistochemical diagnostics together with the molecular background of PanNEN are summarized.
Resumo:
The classification of neuroendocrine neoplasms (NENs) has been evolving steadily over the last decades. Important prognostic factors of NENs are their proliferative activity and presence/absence of necrosis. These factors are reported in NENs of all body sites; however, the terminology as well as the exact rules of classification differ according to the location of the primary tumor. Only in gastroenteropancreatic (GEP) NENs a formal grading is performed. This grading is based on proliferation assessed by the mitotic count and/or Ki-67 proliferation index. In the lung, NEN grading is an intrinsic part of the tumor designation with typical carcinoids corresponding to neuroendocrine tumor (NET) G1 and atypical carcinoids to NET G2; however, the presence or absence of necrotic foci is as important as proliferation for the differentiation between typical and atypical carcinoids. Immunohistochemical markers can be used to demonstrate neuroendocrine differentiation. Synaptophysin and chromogranin A are, to date, the most reliable and most commonly used for this purpose. Beyond this, other markers can be helpful, for example in the situation of a NET metastasis of unknown primary, where a hormonal profile or a panel of transcription factors can give hints to the primary site. Many immunohistochemical markers have been shown to correlate with prognosis but are not used in clinical practice, for example cytokeratin 19 and KIT expression in pancreatic NETs. There is no predictive biomarker in use, with the exception of somatostatin receptor (SSTR) 2 expression for predicting the amenability of a tumor to in vivo SSTR targeting for imaging or therapy.
Resumo:
Classical swine fever virus replicon particles (CSF-VRP) deficient for E(rns) were evaluated as a non-transmissible marker vaccine. A cDNA clone of CSFV strain Alfort/187 was used to obtain a replication-competent mutant genome (replicon) lacking the sequence encoding the 227 amino acids of the glycoprotein E(rns) (A187delE(rns)). For packaging of A187delE(rns) into virus particles, porcine kidney cell lines constitutively expressing E(rns) of CSFV were established. The rescued VRP were infectious in cell culture but did not yield infectious progeny virus. Single intradermal vaccination of two pigs with 10(7) TCID(50) of VRP A187delE(rns) elicited neutralizing antibodies, anti-E2 antibodies, and cellular immune responses determined by an increase of IFN-gamma producing cells. No anti-E(rns) antibodies were detected in the vaccinees confirming that this vaccine represents a negative marker vaccine allowing differentiation between infected and vaccinated animals. The two pigs were protected against lethal challenge with the highly virulent CSFV strain Eystrup. In contrast, oral immunization resulted in only partial protection, and neither CSFV-specific antibodies nor stimulated T-cells were found before challenge. These data represent a good basis for more extended vaccination/challenge trials including larger numbers of animals as well as more thorough analysis of virus shedding using sentinel animals to monitor horizontal spread of the challenge virus.
Resumo:
Proliferative kidney disease (PKD) is an emerging disease threatening wild salmonid populations. In temperature-controlled aquaria, PKD can cause mortality rates of up to 85% in rainbow trout. So far, no data about PKD-related mortality in wild brown trout Salmo trutta fario are available. The aim of this study was to investigate mortality rates and pathology in brown trout kept in a cage within a natural river habitat known to harbor Tetracapsuloides bryosalmonae. Young-of-the-year (YOY) brown trout, free of T. bryosalmonae, were exposed in the River Wutach, in the northeast of Switzerland, during 3 summer months. Samples of wild brown trout caught by electrofishing near the cage location were examined in parallel. The incidence of PKD in cage-exposed animals (69%) was not significantly different to the disease prevalence of wild fish (82 and 80% in the upstream and downstream locations, respectively). The mortality in cageexposed animals, however, was as low as 15%. At the termination of the exposure experiment, surviving fish showed histological lesions typical for PKD regression, suggesting that many YOY brown trout survive the initial infection. Our results at the River Wutach suggest that PKD in brown trout does not always result in high mortality under natural conditions.
Resumo:
Waddlia chondrophila is a known bovine abortigenic Chlamydia-related bacterium that has been associated with adverse pregnancy outcomes in human. However, there is a lack of knowledge regarding how W. chondrophila infection spreads, its ability to elicit an immune response and induce pathology. A murine model of genital infection was developed to investigate the pathogenicity and immune response associated with a W. chondrophila infection. Genital inoculation of the bacterial agent resulted in a dose-dependent infection that spread to lumbar lymph nodes and successively to spleen and liver. Bacterial-induced pathology peaked on day 14, characterized by leukocyte infiltration (uterine horn, liver, and spleen), necrosis (liver) and extramedullary hematopoiesis (spleen). Immunohistochemistry demonstrated the presence of a large number of W. chondrophila in the spleen on day 14. Robust IgG titers were detected by day 14 and remained high until day 52. IgG isotypes consisted of high IgG2a, moderate IgG3 and no detectable IgG1, indicating a Th1-associated immune response. This study provides the first evidence that W. chondrophila genital infection is capable of inducing a systemic infection that spreads to major organs, induces uterus, spleen, and liver pathology and elicits a Th1-skewed humoral response. This new animal model will help our understanding of the mechanisms related to intracellular bacteria-induced miscarriages, the most frequent complication of pregnancy that affects one in four women.
Resumo:
Background: The Swiss pig population enjoys a favourable health situation. To further promote this, the Pig Health Service (PHS) conducts a surveillance program in affiliated herds: closed multiplier herds with the highest PHS-health and hygiene status have to be free from swine dysentery and progressive atrophic rhinitis and are clinically examined four times a year, including laboratory testing. Besides, four batches of pigs per year are fattened together with pigs from other herds and checked for typical symptoms (monitored fattening groups (MF)). While costly and laborious, little was known about the effectiveness of the surveillance to detect an infection in a herd. Therefore, the sensitivity of the surveillance for progressive atrophic rhinitis and swine dysentery at herd level was assessed using scenario tree modelling, a method well established at national level. Furthermore, its costs and the time until an infection would be detected were estimated, with the final aim of yielding suggestions how to optimize surveillance. Results: For swine dysentery, the median annual surveillance sensitivity was 96.7 %, mean time to detection 4.4 months, and total annual costs 1022.20 Euro/herd. The median component sensitivity of active sampling was between 62.5 and 77.0 %, that of a MF between 7.2 and 12.7 %. For progressive atrophic rhinitis, the median surveillance sensitivity was 99.4 %, mean time to detection 3.1 months and total annual costs 842.20 Euro. The median component sensitivity of active sampling was 81.7 %, that of a MF between 19.4 and 38.6 %. Conclusions: Results indicate that total sensitivity for both diseases is high, while time to detection could be a risk in herds with frequent pig trade. From all components, active sampling had the highest contribution to the surveillance sensitivity, whereas that of MF was very low. To increase efficiency, active sampling should be intensified (more animals sampled) and MF abandoned. This would significantly improve sensitivity and time to detection at comparable or lower costs. The method of scenario tree modelling proved useful to assess the efficiency of surveillance at herd level. Its versatility allows adjustment to all kinds of surveillance scenarios to optimize sensitivity, time to detection and/or costs.
Resumo:
The viral protein Npro is unique to the genus Pestivirus within the family Flaviviridae. After autocatalytic cleavage from the nascent polyprotein, Npro suppresses type I IFN (IFN-α/β) induction by mediating proteasomal degradation of IFN regulatory factor 3 (IRF-3). Previous studies found that the Npro-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of Npro coordinating zinc by means of the amino acid residues C112, C134, D136 and C138. Interestingly, four classical swine fever virus (CSFV) isolates obtained from diseased pigs in Thailand in 1993 and 1998 did not suppress IFN-α/β induction despite the presence of an intact TRASH domain. Through systematic analyses, it was found that an amino acid mutation at position 40 or mutations at positions 17 and 61 in the N-terminal half of Npro of these four isolates were related to the lack of IRF-3-degrading activity. Restoring a histidine at position 40 or both a proline at position 17 and a lysine at position 61 based on the sequence of a functional Npro contributed to higher stability of the reconstructed Npro compared with the Npro from the Thai isolate. This led to enhanced interaction of Npro with IRF-3 along with its degradation by the proteasome. The results of the present study revealed that amino acid residues in the N-terminal domain of Npro are involved in the stability of Npro, in interaction of Npro with IRF-3 and subsequent degradation of IRF-3, leading to downregulation of IFN-α/β production.
Resumo:
Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.