56 resultados para reperfusion injury
Resumo:
Ischemia/reperfusion injury leads to activation of graft endothelial cells (EC), boosting antigraft immunity and impeding tolerance induction. We hypothesized that the complement inhibitor and EC-protectant dextran sulfate (DXS, MW 5000) facilitates long-term graft survival induced by non-depleting anti-CD4 mAb (RIB 5/2). Hearts from DA donor rats were heterotopically transplanted into Lewis recipients treated with RIB 5/2 (20 mg/kg, days-1,0,1,2,3; i.p.) with or without DXS (grafts perfused with 25 mg, recipients treated i.v. with 25 mg/kg on days 1,3 and 12.5 mg/kg on days 5,7,9,11,13,15). Cold graft ischemia time was 20 min or 12 h. Median survival time (MST) was comparable between RIB 5/2 and RIB 5/2+DXS-treated recipients in the 20-min group with >175-day graft survival. In the 12-h group RIB 5/2 only led to chronic rejection (MST = 49.5 days) with elevated alloantibody response, whereas RIB 5/2+DXS induced long-term survival (MST >100 days, p < 0.05) with upregulation of genes related to transplantation tolerance. Analysis of the 12-h group treated with RIB 5/2+DXS at 1-day posttransplantation revealed reduced EC activation, complement deposition and inflammatory cell infiltration. In summary, DXS attenuates I/R-induced acute graft injury and facilitates long-term survival in this clinically relevant transplant model.
Resumo:
OBJECTIVE: Euro-Collins solution (EC) is routinely used in lung transplantation. The high potassium of EC, however, may damage the vascular endothelium, thereby contributing to postischemic reperfusion injury. To assess the influence of the potassium concentration on lung preservation, we evaluated the effect of a "low potassium Euro-Collins solution" (LPEC), in which the sodium and potassium concentrations were reversed. METHODS: In an extracorporeal rat heart-lung model lungs were preserved with EC and LPEC. The heart-lung blocks (HLB) were perfused with Krebs-Henseleit solution containing washed bovine red blood cells and ventilated with room air. The lungs were perfused via the working right ventricle with deoxygenated perfusate. Oxygenation and pulmonary vascular resistance (PVR) were monitored. After baseline measurements, hearts were arrested with St. Thomas' solution and the lungs were perfused with EC or LPEC, or were not perfused (controls). The HLBs were stored for 5 min or 2 h ischemic time at 4 degrees C. Reperfusion and ventilation was performed for 40 min. At the end of the trial the wet/dry ratio of the lungs was calculated and light microscopic assessment of the degree of edema was performed. RESULTS: After 5 min of ischemia oxygenation was significantly better in both preserved groups compared to the controls. Pulmonary vascular resistance was elevated in all three groups after 30 min reperfusion at both ischemic times. After 2 h of ischemia PVR of the group preserved with LPEC was significantly lower than those of the EC and controls (LPEC-5 min: 184 +/- 65 dynes * sec * cm-5, EC-5 min: 275 +/- 119 dynes * sec * cm * cm-5, LPEC-2 h: 324 +/- 47 dynes * sec * m-5, EC-2 h: 507 +/- 83 dynes * sec * cm-5). Oxygenation after 2 h of ischemia and 30 min reperfusion was significantly better in the LPEC group compared to EC and controls (LPEC: 70 +/- 17 mmHg, EC: 44 +/- 3 mmHg). The wet/dry ratio was significantly lower in the two preserved groups compared to controls (LPEC-5 min: 5.7 +/- 0.7, EC-5 min: 5.8 +/- 1.2, controls-5 min: 7.5 +/- 1.8, LPEC-2 h: 6.7 +/- 0.4, EC: 6.9 +/- 0.4, controls-2 h: 7.3 +/- 0.4). CONCLUSIONS: We thus conclude that LPEC results in better oxygenation and lower PVR in this lung preservation model. A low potassium concentration in lung preservation solutions may help in reducing the incidence of early graft dysfunction following lung transplantation.
Resumo:
BACKGROUND. The high rate of reperfusion injury in clinical lung transplantation mandates significant improvements in lung preservation. Innovations should be validated using standardized and low-cost experimental models. METHODS. The model introduced here is analyzed by comparing global lung function after varying ischemic times (2, 4, 8, 16, and 24 hours). A rat double-lung block is flush-perfused, and the main pulmonary artery and left atrium are connected to the left pulmonary artery and vein of a syngeneic recipient using a T-shaped stent. With pressure side ports and incorporated flow crystals, measurement of vascular resistance and graft oxygenation can be performed. The transplant is ventilated separately, and compliance and resistance are determined. RESULTS. The increase in the ischemic interval from 2 to 24 hours caused an increase in the alveolar arterial oxygen difference from 220 +/- 20 to 600 +/- 34 mm Hg, pulmonary vascular resistance from 198 +/- 76 to 638 +/- 212 mm Hg.mL-1.min-1, and resistance to airflow from 274 +/- 50 to 712 +/- 30 cm H2O/L H2O, and a decrease in pulmonary compliance from 0.4 +/- 0.05 to 0.12 +/- 0.06 mL/cm H2O. CONCLUSIONS. This in situ, syngeneic rat lung transplantation model offers an alternative to large animal models for verification of lung preservation solutions and for modification of donor or recipient treatment regimens.
Resumo:
BACKGROUND Natural IgM containing anti-Gal antibodies initiates classic pathway complement activation in xenotransplantation. However, in ischemia-reperfusion injury, IgM also induces lectin pathway activation. The present study was therefore focused on lectin pathway as well as interaction of IgM and mannose-binding lectin (MBL) in pig-to-human xenotransplantation models. METHODS Activation of the different complement pathways was assessed by cell enzyme-linked immunosorbent assay using human serum on wild-type (WT) and α-galactosyl transferase knockout (GalTKO)/hCD46-transgenic porcine aortic endothelial cells (PAEC). Colocalization of MBL/MASP2 with IgM, C3b/c, C4b/c, and C6 was investigated by immunofluorescence in vitro on PAEC and ex vivo in pig leg xenoperfusion with human blood. Influence of IgM on MBL binding to PAEC was tested using IgM depleted/repleted and anti-Gal immunoabsorbed serum. RESULTS Activation of all the three complement pathways was observed in vitro as indicated by IgM, C1q, MBL, and factor Bb deposition on WT PAEC. MBL deposition colocalized with MASP2 (Manders' coefficient [3D] r=0.93), C3b/c (r=0.84), C4b/c (r=0.86), and C6 (r=0.80). IgM colocalized with MBL (r=0.87) and MASP2 (r=0.83). Human IgM led to dose-dependently increased deposition of MBL, C3b/c, and C6 on WT PAEC. Colocalization of MBL with IgM (Pearson's coefficient [2D] rp=0.88), C3b/c (rp=0.82), C4b/c (rp=0.63), and C6 (rp=0.81) was also seen in ex vivo xenoperfusion. Significantly reduced MBL deposition and complement activation was observed on GalTKO/hCD46-PAEC. CONCLUSION Colocalization of MBL/MASP2 with IgM and complement suggests that the lectin pathway is activated by human anti-Gal IgM and may play a pathophysiologic role in pig-to-human xenotransplantation.
Resumo:
The use of non-heart-beating donor (NHBD) lungs may help to overcome the shortage of lung grafts in clinical lung transplantation, but warm ischaemia and ischaemia/reperfusion injury (I/R injury) resulting in primary graft dysfunction represent a considerable threat. Thus, better strategies for optimized preservation of lung grafts are urgently needed. Surfactant dysfunction has been shown to contribute to I/R injury, and surfactant replacement therapy is effective in enhancing lung function and structural integrity in related rat models. In the present study we hypothesize that surfactant replacement therapy reduces oedema formation in a pig model of NHBD lung transplantation. Oedema formation was quantified with (SF) and without (non-SF) surfactant replacement therapy in interstitial and alveolar compartments by means of design-based stereology in NHBD lungs 7 h after cardiac arrest, reperfusion and transplantation. A sham-operated group served as control. In both NHBD groups, nearly all animals died within the first hours after transplantation due to right heart failure. Both SF and non-SF developed an interstitial oedema of similar degree, as shown by an increase in septal wall volume and arithmetic mean thickness as well as an increase in the volume of peribron-chovascular connective tissue. Regarding intra-alveolar oedema, no statistically significant difference could be found between SF and non-SF. In conclusion, surfactant replacement therapy cannot prevent poor outcome after prolonged warm ischaemia of 7 h in this model. While the beneficial effects of surfactant replacement therapy have been observed in several experimental and clinical studies related to heart-beating donor lungs and cold ischaemia, it is unlikely that surfactant replacement therapy will overcome the shortage of organs in the context of prolonged warm ischaemia, for example, 7 h. Moreover, our data demonstrate that right heart function and dysfunctions of the pulmonary vascular bed are limiting factors that need to be addressed in NHBD.
Support of hepatic regeneration by trophic factors from liver-derived mesenchymal stromal/stem cells
Resumo:
Mesenchymal stromal/stem cells (MSCs) have multilineage differentiation potential and as such are known to promote regeneration in response to tissue injury. However, accumulating evidence indicates that the regenerative capacity of MSCs is not via transdifferentiation but mediated by their production of trophic and other factors that promote endogenous regeneration pathways of the tissue cells. In this chapter, we provide a detailed description on how to obtain trophic factors secreted by cultured MSCs and how they can be used in small animal models. More specific, in vivo models to study the paracrine effects of MSCs on regeneration of the liver after surgical resection and/or ischemia and reperfusion injury are described.
Resumo:
OBJECTIVES The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability; however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC); brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury; however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. METHODS Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF); 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. RESULTS Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively; P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%; P < 0.01 for all) in LoR subgroups. CONCLUSIONS Effects of MPC depend on energy substrate availability; MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.
Resumo:
BACKGROUND Endothelial glycocalyx participates in the maintenance of vascular integrity, and its perturbations cause capillary leakage, loss of vascular responsiveness, and enhanced adhesion of leukocytes and platelets. We hypothesized that marked shedding of the glycocalyx core protein, syndecan-1, occurs in end-stage liver disease (ESLD) and that it increases during orthotopic liver transplantation (OLT). We further evaluated the effects of general anesthesia on glycocalyx shedding and its association with acute kidney injury (AKI) after OLT. PATIENTS AND METHODS Thirty consecutive liver transplant recipients were enrolled in this prospective study. Ten healthy volunteers served as a control. Acute kidney injury was defined by Acute Kidney Injury Network criteria. RESULTS Plasma syndecan-1 was significantly higher in ESLD patients than in healthy volunteers (74.3 ± 59.9 vs 10.7 ± 9.4 ng/mL), and it further increased significantly after reperfusion (74.3 ± 59.9 vs 312.6 ± 114.8 ng/mL). The type of general anesthesia had no significant effect on syndecan-1. Syndecan-1 was significantly higher during the entire study in patients with posttransplant AKI stage 2 or 3 compared to patients with AKI stage 0 or 1. The area under the curve of the receiver operating characteristics curve of syndecane-1 to predict AKI stage 2 or 3 within 48 hours after reperfusion was 0.76 (95% confidence interval, 0.57-0.89, P = 0.005). CONCLUSIONS Patients with ESLD suffer from glycocalyx alterations, and ischemia-reperfusion injury during OLT further exacerbates its damage. Despite a higher incidence of AKI in patients with elevated syndecan-1, it is not helpful to predict de novo AKI. Volatile anesthetics did not attenuate glycocalyx shedding in human OLT.
Resumo:
Gebiet: Chirurgie Abstract: OBJECTIVES: – The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability, however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC), brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury, however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. – – METHODS: – Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF), 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. – – RESULTS: – Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively, P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%, P < 0.01 for all) in LoR subgroups. – – CONCLUSIONS: – Effects of MPC depend on energy substrate availability, MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.
Resumo:
Heme oxygenase-1 (HO-1) is an enzyme induced by hypoxia and reperfusion injury, and is associated with organ dysfunction in critically ill patients. Patients resuscitated from out-of-hospital cardiac arrest (OHCA) are subjected to hypoxemia, brain injury, and organ dysfunction. Accordingly, we studied HO-1 among these patients. A total of 143 OHCA patients resuscitated from a shockable initial rhythm and admitted to an ICU were included, with plasma HO-1 measured at ICU admission and at 24 h. We analyzed the associations between plasma HO-1 and time to return of spontaneous circulation (ROSC), 90-day mortality, and 12-month Cerebral Performance Category (CPC). HO-1 plasma concentrations were higher after OHCA compared with controls. HO-1 concentrations at admission and on day 1 associated with ROSC (P = 0.002 to P = 0.003). Admission and day 1 HO-1 plasma concentrations were higher in 90-day non-survivors than in survivors (P = 0.017, 0.026). In addition, poor neurological outcome (CPC 3-5) was associated with higher HO-1 plasma levels at admission (P = 0.024). Admission plasma HO-1 levels had an AUC of 0.623 to predict 90-day mortality and an AUC of 0.611 to predict CPC 3 to 5. In conclusion, we found that higher HO-1 plasma levels are associated with longer ROSC and poor long-term outcome.
Resumo:
Reperfusion of an organ following prolonged ischemia instigates the pro-inflammatory and pro-coagulant response of ischemia / reperfusion (IR) injury. IR injury is a wide-spread pathology, observed in many clinically relevant situations, including myocardial infarction, stroke, organ transplantation, sepsis and shock, and cardiovascular surgery on cardiopulmonary bypass. Activation of the classical, alternative, and lectin complement pathways and the generation of the anaphylatoxins C3a and C5a lead to recruitment of polymorphonuclear leukocytes, generation of radical oxygen species, up-regulation of adhesion molecules on the endothelium and platelets, and induction of cytokine release. Generalized or pathway-specific complement inhibition using protein-based drugs or low-molecular-weight inhibitors has been shown to significantly reduce tissue injury and improve outcome in numerous in-vitro, ex-vivo, and in-vivo models. Despite the obvious benefits in experimental research, only few complement inhibitors, including C1-esterase inhibitor, anti-C5 antibody, and soluble complement receptor 1, have made it into clinical trials of IR injury. The results are mixed, and the next objectives should be to combine knowledge and experience obtained in the past from animal models and channel future work to translate this into clinical trials in surgical and interventional reperfusion therapy as well as organ transplantation.