55 resultados para repeat induced point mutation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, fatal within 1 to 5 years after onset of symptoms. About 3 out of 100’000 persons are diagnosed with ALS and there is still no cure available [1, 2]. 95% of all cases occur sporadically and the aetiology remains largely unknown [3]. However, up to now 16 genes were identified to play a role in the development of familial ALS. One of these genes is FUS that encodes for the protein fused in sarcoma (FUS). Mutations in this gene are responsible for some cases of sporadic as well as of inherited ALS [4]. FUS belongs to the family of heterogeneous nuclear ribonucleoproteins and is predicted to be involved in several cellular functions like transcription regulation, RNA splicing, mRNA transport in neurons and microRNA processing [5] Aberrant accumulation of mutated FUS has been found in the cytoplasm of motor neurons from ALS patients [6]. The mislocalization of FUS is based on a mutation in the nuclear localization signal of FUS [7]. However, it is still unclear if the cytoplasmic localization of FUS leads to a toxic gain of cytoplasmic function and/or a loss of nuclear function that might be crucial in the course of ALS. The goal of this project is to characterize the impact of ALS-associated FUS mutations on in vitro differentiated motor neurons. To this end, we edit the genome of induced pluripotent stem cells (iPSC) using transcription activator-like effector nucleases (TALENs) [8,9] to create three isogenic cell lines, each carrying an ALS-associated FUS mutation (G156E, R244C and P525L). These iPSC’s will then be differentiated to motor neurons according to a recently established protocol [10] and serve to study alterations in the transcriptome, proteome and metabolome upon the expression of ALS-associated FUS. With this approach, we hope to unravel the molecular mechanism leading to FUS-associated ALS and to provide new insight into the emerging connection between misregulation of RNA metabolism and neurodegeneration, a connection that is currently implied in a variety of additional neurological diseases, including spinocerebellar ataxia 2 (SCA-2), spinal muscular atrophy (SMA), fragile X syndrome, and myotonic dystrophy. [1] Cleveland, D.W. et al. (2001) Nat Rev Neurosci 2(11): 806-819 [2] Sathasivam, S. (2010) Singapore Med J 51(5): 367-372 [3] Schymick, J.C. et al. (2007) Hum Mol Genet Vol 16: 233-242 [4] Pratt, A.J. et al. (2012). Degener Neurol Neuromuscul Dis 2012(2): 1-14 [5] Lagier-Tourenne, C. Hum Mol Genet, 2010. 19(R1): p. R46-64 [6] Mochizuki, Y. et al. (2012) J Neurol Sci 323(1-2): 85-92 [7] Dormann, D. et al. (2010) EMBO J 29(16): 2841-2857 [8] Hockemeyer, D. et al. (2011) Nat Biotech 29(8): 731-734 [9] Joung, J.K. and J.D. Sander (2013) Nat Rev Mol Cell Biol 14(1): 49-55 [10]Amoroso, M.W. et al. (2013) J Neurosci 33(2): 574-586.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UNLABELLED We report on our patient (case 2) who experienced a first acute episode of thrombotic thrombocytopenic purpura (TTP) at the age of 19 years during her first pregnancy in 1976 which ended in a spontaneous abortion in the 30th gestational week. Treatment with red blood cell concentrates was implemented and splenectomy was performed. After having suffered from several TTP episodes in 1977, possibly mitigated by acetylsalicylic acid therapy, an interruption and sterilization were performed in 1980 in her second pregnancy thereby avoiding another disease flare-up. Her elder sister (case 1) had been diagnosed with TTP in 1974, also during her first pregnancy. She died in 1977 during her second pregnancy from a second acute TTP episode. DIAGNOSIS In 2013 a severe ADAMTS13 deficiency of <10% without detectable ADAMTS13 inhibitor was repeatedly found. Investigation of the ADAMTS13 gene showed that the severe ADAMTS13 deficiency was caused by compound heterozygous ADAMTS13 mutations: a premature stop codon in exon 2 (p.Q44X), and a missense mutation in exon 24 (p.R1060W) associated with low but measurable ADAMTS13 activity. CONCLUSION Genetic analysis of the ADAMTS13 gene is important in TTP patients of all ages if an ADAMTS13 inhibitor has been excluded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replacement of Asp372 by Ile. In this structural variant, proton pumping was uncoupled from internal electron transfer and O2 reduction. The results from our studies show that proton uptake to the pump site (time constant ∼65 μs in the wild-type cytochrome c oxidase) was impaired in the Asp372Ile variant. Furthermore, a reaction step that in the wild-type cytochrome c oxidase is linked to simultaneous proton uptake and release with a time constant of ∼1.2 ms was slowed to ∼8.4 ms, and in Asp372Ile was only associated with proton uptake to the catalytic site. These data identify reaction steps that are associated with protonation and deprotonation of the pump site, and point to the area around Asp372 as the location of this site in the ba3 cytochrome c oxidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the largest international study on Glanzmann thrombasthenia (GT), an inherited bleeding disorder where defects of the ITGA2B and ITGB3 genes cause quantitative or qualitative defects of the αIIbβ3 integrin, a key mediator of platelet aggregation. Sequencing of the coding regions and splice sites of both genes in members of 76 affected families identified 78 genetic variants (55 novel) suspected to cause GT. Four large deletions or duplications were found by quantitative real-time PCR. Families with mutations in either gene were indistinguishable in terms of bleeding severity that varied even among siblings. Families were grouped into type I and the rarer type II or variant forms with residual αIIbβ3 expression. Variant forms helped identify genes encoding proteins mediating integrin activation. Splicing defects and stop codons were common for both ITGA2B and ITGB3 and essentially led to a reduced or absent αIIbβ3 expression; included was a heterozygous c.1440-13_c.1440-1del in intron 14 of ITGA2B causing exon skipping in 7 unrelated families. Molecular modeling revealed how many missense mutations induced subtle changes in αIIb and β3 domain structure across both subunits thereby interfering with integrin maturation and/or function. Our study extends knowledge of Glanzmann thrombasthenia and the pathophysiology of an integrin. This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int-/-) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS Mechanisms that ultimately lead to dysphagia are still not totally clear. Patients with laparoscopic gastric banding (LAGB) often complain about dysphagia, regurgitation and heartburn. Our aim was to evaluate the contribution of intrabolus pressure to symptoms of gastric banding. METHODS This study investigated 30 patients with LAGB before and 3 months after conversion to Roux-en-Y gastric bypass (RYGB), evaluating symptoms with a 7-point-Likert-scale and esophageal peristalsis, esophageal bolus transit and intrabolus pressure changes using combined impedance-manometry. RESULTS Conversion from LAGB to RYGB leads to a significant reduction in dysphagia (1.9 +/- 0.4 vs. 0.0 +/- 0.0; p< 0.01) and regurgitation (4.2 +/- 0.4 vs. 0.1 +/- 0.1; p< 0.01) symptom scores. For liquid swallows we found a modest but significant correlation between the intensity of dysphagia and intrabolus pressure (r=0.11; p<0.05) and the intensity of regurgitation and intrabolus pressure for viscous swallows (r=0.12, p<0.05) in patients with LAGB. There was a significant (p< 0.05) reduction in intrabolus pressure at 5 cm above LES before (liquid 10.6 +/-1.0; viscous 13.5 +/- 1.5) and after (liquid 6.4 +/- 0.6; viscous 10.5 +/- 0.9) conversion from LAGB to RYGB. CONCLUSION Current data suggest that intraesophageal pressure during bolus presence in the distal esophagus contributes to the development but not to the intensity of dysphagia and regurgitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell cycle checkpoints are signal transduction pathways that control the order and timing of cell cycle transitions, ensuring that critical events are completed before the occurrence of the next cell cycle transition. The Chk2 family of kinases is known to play a central role in mediating the cellular responses to DNA damage or DNA replication blocks in various organisms. Here we show through a phylogenetic study that the Drosophila melanogaster serine/threonine kinase Loki is the homolog of the yeast Mek1p, Rad53p, Dun1p, and Cds1 proteins as well as the human Chk2. Functional analyses allowed us to conclude that, in flies, chk2 is involved in monitoring double-strand breaks (DSBs) caused by irradiation during S and G2 phases. In this process it plays an essential role in inducing a cell cycle arrest in embryonic cells. Our results also show that, in contrast to C. elegans chk2, Drosophila chk2 is not essential for normal meiosis and recombination, and it also appears to be dispensable for the MMS-induced DNA damage checkpoint and the HU-induced DNA replication checkpoint during larval development. In addition, Drosophila chk2 does not act at the same cell cycle phases as its yeast homologs, but seems rather to be involved in a pathway similar to the mammalian one, which involves signaling through the ATM/Chk2 pathway in response to genotoxic insults. As mutations in human chk2 were linked to several cancers, these similarities point to the usefulness of the Drosophila model system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Hepatitis B viruses (HBV) harboring mutations in the a-determinant of the Hepatitis B surface antigen (HBsAg) are associated with reduced reactivity of HBsAg assays. OBJECTIVES To evaluate the sensitivity and specificity of three HBsAg point-of-care tests for the detection of HBsAg of viruses harboring HBsAg mutations. STUDY DESIGN A selection of 50 clinical plasma samples containing HBV with HBsAg mutations was used to evaluate the performance of three HBsAg point-of-care tests (Vikia(®), bioMérieux, Marcy-L'Étoile, France. Alere Determine HBsAg™, Iverness Biomedical Innovations, Köln, Germany. Quick Profile™, LumiQuick Diagnostics, California, USA) and compared to the ARCHITECT HBsAg Qualitative(®) assay (Abbott Laboratories, Sligo, Ireland). RESULTS The sensitivity of the point-of-care tests ranged from 98% to 100%. The only false-negative result occurred using the Quick Profile™ assay with a virus harboring a D144A mutation. CONCLUSIONS The evaluated point-of-care tests revealed an excellent sensitivity in detecting HBV samples harboring HBsAg mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims Duchenne muscular dystrophy (DMD), a degenerative pathology of skeletal muscle, also induces cardiac failure and arrhythmias due to a mutation leading to the lack of the protein dystrophin. In cardiac cells, the subsarcolemmal localization of dystrophin is thought to protect the membrane from mechanical stress. The absence of dystrophin results in an elevated stress-induced Ca2+ influx due to the inadequate functioning of several proteins, such as stretch-activated channels (SACs). Our aim was to investigate whether transient receptor potential vanilloid channels type 2 (TRPV2) form subunits of the dysregulated SACs in cardiac dystrophy. Methods and results We defined the role of TRPV2 channels in the abnormal Ca2+ influx of cardiomyocytes isolated from dystrophic mdx mice, an established animal model for DMD. In dystrophic cells, western blotting showed that TRPV2 was two-fold overexpressed. While normally localized intracellularly, in myocytes from mdx mice TRPV2 channels were translocated to the sarcolemma and were prominent along the T-tubules, as indicated by immunocytochemistry. Membrane localization was confirmed by biotinylation assays. Furthermore, in mdx myocytes pharmacological modulators suggested an abnormal activity of TRPV2, which has a unique pharmacological profile among TRP channels. Confocal imaging showed that these compounds protected the cells from stress-induced abnormal Ca2+ signals. The involvement of TRPV2 in these signals was confirmed by specific pore-blocking antibodies and by small-interfering RNA ablation of TRPV2. Conclusion Together, these results establish the involvement of TRPV2 in a stretch-activated calcium influx pathway in dystrophic cardiomyopathy, contributing to the defective cellular Ca2+ handling in this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Imetelstat, a 13-mer oligonucleotide that is covalently modified with lipid extensions, competitively inhibits telomerase enzymatic activity. It has been shown to inhibit megakaryocytic proliferation in vitro in cells obtained from patients with essential thrombocythemia. In this phase 2 study, we investigated whether imetelstat could elicit hematologic and molecular responses in patients with essential thrombocythemia who had not had a response to or who had had unacceptable side effects from prior therapies. METHODS A total of 18 patients in two sequential cohorts received an initial dose of 7.5 or 9.4 mg of imetelstat per kilogram of body weight intravenously once a week until attainment of a platelet count of approximately 250,000 to 300,000 per cubic millimeter. The primary end point was the best hematologic response. RESULTS Imetelstat induced hematologic responses in all 18 patients, and 16 patients (89%) had a complete hematologic response. At the time of the primary analysis, 10 patients were still receiving treatment, with a median follow-up of 17 months (range, 7 to 32 [ongoing]). Molecular responses were seen in 7 of 8 patients who were positive for the JAK2 V617F mutation (88%; 95% confidence interval, 47 to 100). CALR and MPL mutant allele burdens were also reduced by 15 to 66%. The most common adverse events during treatment were mild to moderate in severity; neutropenia of grade 3 or higher occurred in 4 of the 18 patients (22%) and anemia, headache, and syncope of grade 3 or higher each occurred in 2 patients (11%). All the patients had at least one abnormal liver-function value; all persistent elevations were grade 1 or 2 in severity. CONCLUSIONS Rapid and durable hematologic and molecular responses were observed in patients with essential thrombocythemia who received imetelstat. (Funded by Geron; ClinicalTrials.gov number, NCT01243073.).