64 resultados para planets and satellites: individual: Uranus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a multicore multidopant fiber which, when pumped with a single pump source around ∼800 nm , emits a more than one octave-spanning fluorescence spectrum ranging from 925 to 2300 nm . The fiber preform is manufactured from granulated oxides and the individual cores are doped with five different rare earths, i.e., Nd3+ , Yb3+ , Er3+ , Ho3+ , and Tm3+ .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Fractures of the mandible (lower jaw) are a common occurrence and usually related to interpersonal violence or road traffic accidents. Mandibular fractures may be treated using open (surgical) and closed (non-surgical) techniques. Fracture sites are immobilized with intermaxillary fixation (IMF) or other external or internal devices (i.e. plates and screws) to allow bone healing. Various techniques have been used, however uncertainty exists with respect to the specific indications for each approach. OBJECTIVES The objective of this review is to provide reliable evidence of the effects of any interventions either open (surgical) or closed (non-surgical) that can be used in the management of mandibular fractures, excluding the condyles, in adult patients. SEARCH METHODS We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (to 28 February 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 1), MEDLINE via OVID (1950 to 28 February 2013), EMBASE via OVID (1980 to 28 February 2013), metaRegister of Controlled Trials (to 7 April 2013), ClinicalTrials.gov (to 7 April 2013) and the WHO International Clinical Trials Registry Platform (to 7 April 2013). The reference lists of all trials identified were checked for further studies. There were no restrictions regarding language or date of publication. SELECTION CRITERIA Randomised controlled trials evaluating the management of mandibular fractures without condylar involvement. Any studies that compared different treatment approaches were included. DATA COLLECTION AND ANALYSIS At least two review authors independently assessed trial quality and extracted data. Results were to be expressed as random-effects models using mean differences for continuous outcomes and risk ratios for dichotomous outcomes with 95% confidence intervals. Heterogeneity was to be investigated to include both clinical and methodological factors. MAIN RESULTS Twelve studies, assessed as high (six) and unclear (six) risk of bias, comprising 689 participants (830 fractures), were included. Interventions examined different plate materials and morphology; use of one or two lag screws; microplate versus miniplate; early and delayed mobilization; eyelet wires versus Rapid IMF™ and the management of angle fractures with intraoral access alone or combined with a transbuccal approach. Patient-oriented outcomes were largely ignored and post-operative pain scores were inadequately reported. Unfortunately, only one or two trials with small sample sizes were conducted for each comparison and outcome. Our results and conclusions should therefore be interpreted with caution. We were able to pool the results for two comparisons assessing one outcome. Pooled data from two studies comparing two miniplates versus one miniplate revealed no significant difference in the risk of post-operative infection of surgical site (risk ratio (RR) 1.32, 95% CI 0.41 to 4.22, P = 0.64, I(2) = 0%). Similarly, no difference in post-operative infection between the use of two 3-dimensional (3D) and standard (2D) miniplates was determined (RR 1.26, 95% CI 0.19 to 8.13, P = 0.81, I(2) = 27%). The included studies involved a small number of participants with a low number of events. AUTHORS' CONCLUSIONS This review illustrates that there is currently inadequate evidence to support the effectiveness of a single approach in the management of mandibular fractures without condylar involvement. The lack of high quality evidence may be explained by clinical diversity, variability in assessment tools used and difficulty in grading outcomes with existing measurement tools. Until high level evidence is available, treatment decisions should continue to be based on the clinician's prior experience and the individual circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Für Sportvereine als Interessenorganisationen scheint die Rückbindung der Vereinsziele an die Mitgliederinteressen von zentraler Bedeutung zu sein. In der Vereinsrealität dürfte aber diese Rückbindung nur teilweise gewährleistet sein und folglich Ziel-Interessen-Divergenzen eher die Norm als die Ausnahme darstellen. Vor diesem Hintergrund stellt sich die Frage, welche Ursachen für Ziel-Interessen-Divergenzen verantwortlich zu machen sind und welche Auswirkungen sich daraus für die Vereine ergeben. Dieser Frage geht der vorliegende Beitrag nach, indem auf der Grundlage des Akteurtheoretischen Mehr-Ebenen-Modells zur Analyse der Entwicklung von Sportvereinen die struktur- und handlungsbedingten Ursachen und Auswirkungen von Divergenzen auf der Vereins- und Mitgliederebene beleuchtet werden. Mit Blick auf die Ursachen wurde der Einfluss der korporativen Vereinsstrukturen und der individuellen Handlungsorientierungen der Mitglieder auf Divergenzen untersucht. Die Befunde hierzu zeigen, dass Divergenzen einerseits durch einem zunehmenden Differenzierungs- und Hierarchisierungsgrad (z.B. Vereinsgröße, Umweltvernetzung, Oligarchisierung) begünstigt werden und andererseits vor allem bei einer primären Verfolgung von Eigeninteressen der Mitglieder auftreten. Hinsichtlich der Auswirkungen wurden die individuellen Mitgliederreaktionen und die korporativen Vereinsreaktionen auf Divergenzen analysiert. Diesbezüglich zeigen die Befunde, dass sowohl die Mitglieder als auch die Vereinsführung überwiegend konstruktiv auf Divergenzen reagieren (z.B. durch Problemansprache, Vertrauen, Kompromissfindung), so dass es vielen Vereinen offenbar relativ gut gelingt, Ziel-Interessen-Divergenzen bis zu einem gewissen Grad sowohl aushalten als auch aufarbeiten zu können.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic reviews and meta-analyses of randomized trials that include patient-reported outcomes (PROs) often provide crucial information for patients, clinicians and policy-makers facing challenging health care decisions. Based on emerging methods, guidance on improving the interpretability of meta-analysis of patient-reported outcomes, typically continuous in nature, is likely to enhance decision-making. The objective of this paper is to summarize approaches to enhancing the interpretability of pooled estimates of PROs in meta-analyses. When differences in PROs between groups are statistically significant, decision-makers must be able to interpret the magnitude of effect. This is challenging when, as is often the case, clinical trial investigators use different measurement instruments for the same construct within and between individual randomized trials. For such cases, in addition to pooling results as a standardized mean difference, we recommend that systematic review authors use other methods to present results such as relative (relative risk, odds ratio) or absolute (risk difference) dichotomized treatment effects, complimented by presentation in either: natural units (e.g. overall depression reduced by 2.4 points when measured on a 50-point Hamilton Rating Scale for Depression); minimal important difference units (e.g. where 1.0 unit represents the smallest difference in depression that patients, on average, perceive as important the depression score was 0.38 (95%CI 0.30 to 0.47) units less than the control group); or a ratio of means (e.g. where the mean in the treatment group is divided by the mean in the control group, the ratio of means is 1.27, representing a 27%relative reduction in the mean depression score).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research focuses on the question of whether even a preliminary decision causes a confirmation bias in order to maintain the status quo and examines individual differences in consistency between the preliminary and final decision and biased information processing. Dispositional Need for Closure (NFC, Webster & Kruglanski, 1994) was expected to predict revision or maintenance of the preliminary decision (decision consistency) after additional information on the issue was searched for and evaluated. Participants higher on dispositional NFC were less likely to change their preliminary decision than participants lower on dispositional NFC. Furthermore, the effect of NFC on decision consistency was fully mediated by biased information evaluation following the preliminary decision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During school-to-work transition, adolescents develop values and prioritize what is im-portant in their life. Values are concepts or beliefs about desirable states or behaviors that guide the selection or evaluation of behavior and events, and are ordered by their relative importance (Schwartz & Bilsky, 1987). Stressing the important role of values, career re-search has intensively studied the effect of values on educational decisions and early career development (e.g. Eccles, 2005; Hirschi, 2010; Rimann, Udris, & Weiss, 2000). Few re-searchers, however, have investigated so far how values develop in the early career phase and how value trajectories are influenced by individual characteristics. Values can be oriented towards specific life domains, such as work or family. Work values include intrinsic and extrinsic aspects of work (e.g., self-development, cooperation with others, income) (George & Jones, 1997). Family values include the importance of partner-ship, the creation of an own family and having children (Mayer, Kuramschew, & Trommsdroff, 2009). Research indicates that work values change considerably during early career development (Johnson, 2001; Lindsay & Knox, 1984). Individual differences in work values and value trajectories are found e.g., in relation to gender (Duffy & Sedlacek, 2007), parental background (Loughlin & Barling, 2001), personality (Lowry et al., 2012), educa-tion (Battle, 2003), and the anticipated timing of school-to-work transition (Porfeli, 2007). In contrast to work values, research on family value trajectories is rare and knowledge about the development during the school-to-work transition and early career development is lack-ing. This paper aims at filling this research gap. Focusing on family values and intrinsic work values and we expect a) family and work val-ues to change between ages 16 and 25, and b) that initial levels of family and work values as well as value change to be predicted by gender, reading literacy, ambition, and expected du-ration of education. Method. Using data from 2620 young adults (59.5% females), who participated in the Swiss longitudinal study TREE, latent growth modeling was employed to estimate the initial level and growth rate per year for work and family values. Analyses are based on TREE-waves 1 (year 2001, first year after compulsory school) to 8 (year 2010). Variables in the models included family values and intrinsic work values, gender, reading literacy, ambition and ex-pected duration of education. Language region was included as control variable. Results. Family values did not change significantly over the first four years after leaving compulsory school (mean slope = -.03, p =.36). They increased, however, significantly five years after compulsory school (mean slope = .13, p >.001). Intercept (.23, p < .001), first slope (.02, p < .001), and second slope (.01, p < .001) showed significant variance. Initial levels were higher for men and those with higher ambitions. Increases were found to be steeper for males as well as for participants with lower educational duration expectations and reading skills. Intrinsic work values increased over the first four years (mean slope =.03, p <.05) and showed a tendency to decrease in the years five to ten (mean slope = -.01, p < .10). Intercept (.21, p < .001), first slope (.01, p < .001), and second slope (.01, p < .001) showed signifi-cant variance, meaning that there are individual differences in initial levels and growth rates. Initial levels were higher for females, and those with higher ambitions, expecting longer educational pathways, and having lower reading skills. Growth rates were lower for the first phase and steeper for the second phase for males compared to females. Discussion. In general, results showed different patterns of work and family value trajecto-ries, and different individual factors related to initial levels and development after compul-sory school. Developments seem to fit to major life and career roles: in the first years after compulsory school young adults may be engaged to become established in one's job; later on, raising a family becomes more important. That we found significant gender differences in work and family trajectories may reflect attempts to overcome traditional roles, as over-all, women increase in work values and men increase in family values, resulting in an over-all trend to converge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Planet formation models have been developed during the past years to try to reproduce what has been observed of both the solar system and the extrasolar planets. Some of these models have partially succeeded, but they focus on massive planets and, for the sake of simplicity, exclude planets belonging to planetary systems. However, more and more planets are now found in planetary systems. This tendency, which is a result of radial velocity, transit, and direct imaging surveys, seems to be even more pronounced for low-mass planets. These new observations require improving planet formation models, including new physics, and considering the formation of systems. Aims: In a recent series of papers, we have presented some improvements in the physics of our models, focussing in particular on the internal structure of forming planets, and on the computation of the excitation state of planetesimals and their resulting accretion rate. In this paper, we focus on the concurrent effect of the formation of more than one planet in the same protoplanetary disc and show the effect, in terms of architecture and composition of this multiplicity. Methods: We used an N-body calculation including collision detection to compute the orbital evolution of a planetary system. Moreover, we describe the effect of competition for accretion of gas and solids, as well as the effect of gravitational interactions between planets. Results: We show that the masses and semi-major axes of planets are modified by both the effect of competition and gravitational interactions. We also present the effect of the assumed number of forming planets in the same system (a free parameter of the model), as well as the effect of the inclination and eccentricity damping. We find that the fraction of ejected planets increases from nearly 0 to 8% as we change the number of embryos we seed the system with from 2 to 20 planetary embryos. Moreover, our calculations show that, when considering planets more massive than ~5 M⊕, simulations with 10 or 20 planetary embryos statistically give the same results in terms of mass function and period distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. According to the sequential accretion model (or core-nucleated accretion model), giant planet formation is based first on the formation of a solid core which, when massive enough, can gravitationally bind gas from the nebula to form the envelope. The most critical part of the model is the formation time of the core: to trigger the accretion of gas, the core has to grow up to several Earth masses before the gas component of the protoplanetary disc dissipates. Aims: We calculate planetary formation models including a detailed description of the dynamics of the planetesimal disc, taking into account both gas drag and excitation of forming planets. Methods: We computed the formation of planets, considering the oligarchic regime for the growth of the solid core. Embryos growing in the disc stir their neighbour planetesimals, exciting their relative velocities, which makes accretion more difficult. Here we introduce a more realistic treatment for the evolution of planetesimals' relative velocities, which directly impact on the formation timescale. For this, we computed the excitation state of planetesimals, as a result of stirring by forming planets, and gas-solid interactions. Results: We find that the formation of giant planets is favoured by the accretion of small planetesimals, as their random velocities are more easily damped by the gas drag of the nebula. Moreover, the capture radius of a protoplanet with a (tiny) envelope is also larger for small planetesimals. However, planets migrate as a result of disc-planet angular momentum exchange, with important consequences for their survival: due to the slow growth of a protoplanet in the oligarchic regime, rapid inward type I migration has important implications on intermediate-mass planets that have not yet started their runaway accretion phase of gas. Most of these planets are lost in the central star. Surviving planets have masses either below 10 M⊕ or above several Jupiter masses. Conclusions: To form giant planets before the dissipation of the disc, small planetesimals (~0.1 km) have to be the major contributors of the solid accretion process. However, the combination of oligarchic growth and fast inward migration leads to the absence of intermediate-mass planets. Other processes must therefore be at work to explain the population of extrasolar planets that are presently known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro- satellite platform. The results have been produced in the frame of ESA’s "As sessment Study for Space Based Space Surveillance Demonstration Mission (Phase A) " performed by the Airbus DS consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of spa ce debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well - designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond - LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling some of the SST core requirements in a stand-alone manner. The evaluation of the concept has shown that an according solution can be implemented with low technological effort and risk. The paper presents details of the system concept, candidate micro - satellite platforms, the observation strategy and the results of performance simulations for GEO coverage and cataloguing accuracy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CHaracterizing ExOPlanet Satellite (CHEOPS) is an ESA Small Mission whose launch is planned for the end of 2017. It is a Ritchey-Chretien telescope with a 320 mm aperture providing a FoV of 0.32 degrees, which will target nearby bright stars already known to host planets, and measure, through ultrahigh precision photometry, the radius of exo-planets, allowing to determine their composition. This paper will present the details of the AIV plan for a demonstration model of the CHEOPS Telescope with equivalent structure but different CTEs. Alignment procedures, needed GSEs and devised verification tests will be described and a path for the AIV of the flight model, which will take place at industries premises, will be sketched. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidimensional talent models represent the current state of the art. However, it remains unclear how these different dimensions interact. Based on current theories of human development, person-oriented approaches seem to be particularly appropriate for talent research. The present study adopts this approach by looking at how a holistic system consisting of the dimensions motivation, motor behaviour and the stage of development goes along with athletic performance. For this purpose, it has to be examined which patterns were formed by the constructs net hope, motor abilities, technical skills and the so far achieved percentage of the predicted adult height and how these patterns are related to subsequent sporting success. 119 young elite football players were questioned and tested three times at intervals of one year, beginning at the age of 12. At the age of 15, the performance level the players had reached was examined. At all three measuring points, four patterns were identified which displayed partial structural and high individual stability. As expected, the players showing values above average in all factors were significantly more likely to advance to the highest performance level. Physically strong, precocious developed players though having some technical weaknesses, have good chances to reach the middle performance level. The results point to the importance of holistic approaches for the prediction of performance among promising football talents in the medium-term and thus provide valuable clues for their selection and promotion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidimensional talent models represent the current state of the art. However, it remains unclear how these different dimensions interact. Based on current theories of human development, person-oriented approaches seem to be particularly appropriate for talent research. The present study adopts this approach by looking at how a holistic system consisting of the different dimensions motivation, motor behaviour and the stage of development goes along with athletic performance. For this purpose, it has to be examined which patterns were formed by the constructs net hope (Elbe et al., 2003), motor abilities (3 motor tests; Höner et al., 2014), technical skills (3 motor tests; Höner et al., 2014) and the so far achieved percentage of the predicted adult height (Mirwald et al, 2002) and how these patterns are related to subsequent sporting success. 119 young elite football players were questioned and tested three times at intervals of one year, beginning at the age of 12. At the age of 15, the performance level the players had reached was examined (national, regional or no talent card). At all three measuring points, four patterns were identified which displayed partial structural and high individual stability. As expected, the players showing values above average in all factors were significantly more likely to advance to the highest performance level (Odds ratio = 2.2, p < .01). Physically strong, precocious developed players though having some technical weaknesses, have good chances to reach the middle performance level (OR = 1.6, p = .01). Players showing values under average, have an one and a half times higher probability to advance to the lowest performance level (p < .01). The results point to the importance of holistic approaches for the prediction of performance among promising football talents in the medium-term and thus provide valuable clues for their selection and promotion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The momentary, global functional state of the brain is reflected by its electric field configuration. Cluster analytical approaches consistently extracted four head-surface brain electric field configurations that optimally explain the variance of their changes across time in spontaneous EEG recordings. These four configurations are referred to as EEG microstate classes A, B, C, and D and have been associated with verbal/phonological, visual, attention reorientation, and subjective interoceptive-autonomic processing, respectively. The present study tested these associations via an intra-individual and inter-individual analysis approach. The intra-individual approach tested the effect of task-induced increased modality-specific processing on EEG microstate parameters. The inter-individual approach tested the effect of personal modality-specific parameters on EEG microstate parameters. We obtained multichannel EEG from 61 healthy, right-handed, male students during four eyes-closed conditions: object-visualization, spatial-visualization, verbalization (6 runs each), and resting (7 runs). After each run, we assessed participants' degrees of object-visual, spatial-visual, and verbal thinking using subjective reports. Before and after the recording, we assessed modality-specific cognitive abilities and styles using nine cognitive tests and two questionnaires. The EEG of all participants, conditions, and runs was clustered into four classes of EEG microstates (A, B, C, and D). RMANOVAs, ANOVAs and post-hoc paired t-tests compared microstate parameters between conditions. TANOVAs compared microstate class topographies between conditions. Differences were localized using eLORETA. Pearson correlations assessed interrelationships between personal modality-specific parameters and EEG microstate parameters during no-task resting. As hypothesized, verbal as opposed to visual conditions consistently affected the duration, occurrence, and coverage of microstate classes A and B. Contrary to associations suggested by previous reports, parameters were increased for class A during visualization, and class B during verbalization. In line with previous reports, microstate D parameters were increased during no-task resting compared to the three internal, goal-directed tasks. Topographic differences between conditions concerned particular sub-regions of components of the metabolic default mode network. Modality-specific personal parameters did not consistently correlate with microstate parameters except verbal cognitive style which correlated negatively with microstate class A duration and positively with class C occurrence. This is the first study that aimed to induce EEG microstate class parameter changes based on their hypothesized functional significance. Beyond, the associations of microstate classes A and B with visual and verbal processing, respectively and microstate class D with interoceptive-autonomic processing, our results suggest that a finely-tuned interplay between all four EEG microstate classes is necessary for the continuous formation of visual and verbal thoughts, as well as interoceptive-autonomic processing. Our results point to the possibility that the EEG microstate classes may represent the head-surface measured activity of intra-cortical sources primarily exhibiting inhibitory functions. However, additional studies are needed to verify and elaborate on this hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The population of space debris increased drastically during the last years. These objects have become a great threat for active satellites. Because the relative velocities between space debris and satellites are high, space debris objects may destroy active satellites through collisions. Furthermore, collisions involving massive objects produce large number of fragments leading to significant growth of the space debris population. The long term evolution of the debris population is essentially driven by so-called catastrophic collisions. An effective remediation measure in order to stabilize the population in Low Earth Orbit (LEO) is therefore the removal of large, massive space debris. To remove these objects, not only precise orbits, but also more detailed information about their attitude states will be required. One important property of an object targeted for removal is its spin period, spin axis orientation and their change over time. Rotating objects will produce periodic brightness variations with frequencies which are related to the spin periods. Such a brightness variation over time is called a light curve. Collecting, but also processing light curves is challenging due to several reasons. Light curves may be undersampled, low frequency components due to phase angle and atmospheric extinction changes may be present, and beat frequencies may occur when the rotation period is close to a multiple of the sampling period. Depending on the method which is used to extract the frequencies, also method-specific properties have to be taken into account. The astronomical Institute of the University of Bern (AIUB) light curve database will be introduced, which contains more than 1,300 light curves acquired over more than seven years. We will discuss properties and reliability of different time series analysis methods tested and currently used by AIUB for the light curve processing. Extracted frequencies and reconstructed phases for some interesting targets, e.g. GLONASS satellites, for which also SLR data were available for the period confirmation, will be presented. Finally we will present the reconstructed phase and its evolution over time of a High-Area-to-Mass-Ratio (HAMR) object, which AIUB observed for several years.