61 resultados para epigenetic
Resumo:
Whereas whole first-milked colostrum IgG1 variation is documented, the IgG1 difference between the quarter mammary glands of dairy animals is unknown. First colostrum was quarter-collected from healthy udders of 8 multiparous dairy cows, all within 3h of parturition. Weight of colostrum produced by individual quarters was determined and a sample of each was frozen for subsequent analysis. Immunoglobulin G1 concentration (mg/mL) was measured by ELISA and total mass (g) was calculated. Standard addition method was used to overcome colostrum matrix effects and validate the standard ELISA measures. Analysis of the data showed that cow and quarter (cow) were significantly different in both concentration and total mass per quarter. Analysis of the mean IgG1 concentration of the front and rear quarters showed that this was not different, but the large variation in individual quarters confounds the analysis. This quarter difference finding indicates that each mammary gland develops a different capacity to accumulate precolostrum IgG1, whereas the circulating hormone concentrations that induce colostrogenesis reach the 4 glands similarly. This finding also shows that the variation in quarter colostrum production is a contributor to the vast variation in first milking colostrum IgG1 content. Finally, the data suggests other factors, such as locally acting autocrine or paracrine, epigenetic, or stochasticity, in gene regulation mechanisms may impinge on colostrogenesis capacity.
Resumo:
Exposure to outdoor air pollutants and passive tobacco smoke are common but avoidable worldwide risk factors for morbidity and mortality of individuals. In addition to well-known effects of pollutants on the cardiovascular system and the development of cancer, in recent years the association between air pollution and respiratory morbidity has become increasingly apparent. Not only in adults, but also in children with asthma and in healthy children a clear harmful effect of exposure towards air pollutants has been demonstrated in many studies. Among others increased pollution has been shown to result in more frequent and more severe respiratory symptoms, more frequent exacerbations, higher need for asthma medication, poorer lung function and increased visits to the emergency department and more frequent hospitalisations. While these associations are well established, the available data on the role of air pollution in the development of asthma seems less clear. Some studies have shown that increased exposure towards tobacco smoke and air pollution leads to an increase in asthma incidence and prevalence; others were not able to confirm those findings. Possible reasons for this discrepancy are different definitions of the outcome asthma, different methods for exposure estimation and differences in the populations studied with differing underlying genetic backgrounds. Regardless of this inconsistency, several mechanisms have already been identified linking air pollution with asthma development. Among these are impaired lung growth and development, immunological changes, genetic or epigenetic effects or increased predisposition for allergic sensitisation. What the exact interactions are and which asthmatic phenotypes will be influenced most by pollutants will be shown by future studies. This knowledge will then be helpful in exploring possible preventive measures for the individual and to help policy makers in deciding upon most appropriate regulations on a population level.
Resumo:
Epstein-Barr virus (EBV)-associated gastric carcinomas (GC) represent a distinct and well-recognized subtype of gastric cancer with a prevalence of around 10% of all GC. In contrast, EBV has not been reported to play a major role in esophageal adenocarcinomas (EAC) and adenocarcinomas of the gastro-esophageal junction (GEJ). We report our experiences on EBV in collections of gastro-esophageal adenocarcinomas from two surgical centers and discuss the current state of research in this field. Tumor samples from 465 primary resected gastro-esophageal adenocarcinomas (118 EAC, 73 GEJ, and 274 GC) were investigated. Presence of EBV was determined by EBV-encoded small RNAs (EBER) in situ hybridization. Results were correlated with pathologic parameters (UICC pTNM category, Her2 status, tumor grading) and survival. EBER positivity was observed in 14 cases. None of the EAC were positive for EBER. In contrast, we observed EBER positivity in 2/73 adenocarcinomas of the GEJ (2.7%) and 12/274 GC (4.4%). These were of intestinal type (seven cases) or unclassifiable (six cases), while only one case was of diffuse type according to the Lauren classification. No association between EBV and pT, pN, or tumor grading was found, neither was there a correlation with clinical outcome. None of the EBER positive cases were Her2 positive. In conclusion, EBV does not seem to play a role in the carcinogenesis of EAC. Moreover, adenocarcinomas of the GEJ show lower rates of EBV positivity compared to GC. Our data only partially correlate with previous reports from the literature. This highlights the need for further research on this distinct entity. Recent reports, however, have identified specific epigenetic and genetic alterations in EBV-associated GC, which might lead to a distinct treatment approach for this specific subtype of GC in the future.
Resumo:
The diagnostics of pancreatic neuroendocrine tumors (PanNEN) have changed in recent years especially concerning the World Health Organization (WHO) classification, TNM staging and grading. Furthermore, some new prognostic and predictive immunohistochemical markers have been introduced. Most progress, however, has been made in the molecular pathogenesis of these neoplasms. Using next generation sequencing techniques, the mammalian target of rapamycin (mTOR) pathway, hypoxia and epigenetic changes were identified as key players in tumorigenesis. In this article the most important developments of morphological as well as immunohistochemical diagnostics together with the molecular background of PanNEN are summarized.
Resumo:
The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.
Resumo:
Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.
Resumo:
Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD.
Resumo:
In bipolar disorders, there are unclear diagnostic boundaries with unipolar depression and schizophrenia, inconsistency of treatment guidelines, relatively long trial-and-error phases of treatment optimization, and increasing use of complex combination therapies lacking empirical evidence. These suggest that the current definition of bipolar disorders based on clinical symptoms reflects a clinically and etiologically heterogeneous entity. Stratification of treatments for bipolar disorders based on biomarkers and improved clinical markers are greatly needed to increase the efficacy of currently available treatments and improve the chances of developing novel therapeutic approaches. This review provides a theoretical framework to identify biomarkers and summarizes the most promising markers for stratification regarding beneficial and adverse treatment effects. State and stage specifiers, neuropsychological tests, neuroimaging, and genetic and epigenetic biomarkers will be discussed with respect to their ability to predict the response to specific pharmacological and psychosocial psychotherapies for bipolar disorders. To date, the most reliable markers are derived from psychopathology and history-taking, while no biomarker has been found that reliably predicts individual treatment responses. This review underlines both the importance of clinical diagnostic skills and the need for biological research to identify markers that will allow the targeting of treatment specifically to sub-populations of bipolar patients who are more likely to benefit from a specific treatment and less likely to develop adverse reactions.
Resumo:
Epidemiological studies demonstrate a relationship between pathological events during foetal development and future cardiovascular risk and the term 'foetal programming of cardiovascular disease' has been coined to describe this phenomenon. The use of assisted reproductive technologies (ARTs) is growing exponentially and 2-5% of children are now born by this procedure. Emerging evidence indicates that ART represents a novel important example of foetal programming. Assisted reproductive technology may modify the cardiovascular phenotype in two ways: (i) ART involves manipulation of the early embryo which is exquisitely sensitive to environmental insults. In line with this concern, ART alters vascular and cardiac function in children and studies in mice show that ART alters the cardiovascular phenotype by epigenetic alterations related to suboptimal culture conditions. (ii) Assisted reproductive technology markedly increases the risk of foetal insults that augment cardiovascular risk in naturally conceived individuals and are expected to have similar consequences in the ART population. Given the young age of the ART population, it will take another 20-30 years before data on cardiovascular endpoints will be available. What is clear already, however, is that ART emerges as an important cardiovascular risk factor. This insight requires us to revise notions on ART's long-term safety and to engage on a debate on its future. There is an urgent need to better understand the mechanisms underpinning ART-induced alteration of the cardiovascular phenotype, improve the procedure and its long-term safety, and, while awaiting this aim, not to abandon medicine's fundamental principle of doing no harm (to future children) and use ART parsimoniously.
Resumo:
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.
Resumo:
BACKGROUND Fertility-preserving measures for women are increasingly being performed for non-medical reasons in Germany. This is now a controversial matter. METHODS The authors searched the PubMed database for pertinent publications on the basis of their clinical and scientific experience and evaluated relevant data from the registry of the German FertiPROTEKT network (www.fertiprotekt. com). The various fertility-preserving measures that are available are described and critically discussed. RESULTS In most cases, the creation of a fertility reserve currently involves the cryopreservation of unfertilized oocytes, rather than of ovarian tissue. Most of the women who decide to undergo this procedure are over 35 years old. According to data from the FertiPROTEKT registry, most such procedures carried out in the years 2012 and 2013 involved a single stimulation cycle. The theoretical probability of childbirth per stimulation is 40% in women under age 35 and 30% in women aged 35 to 39. If the oocytes are kept for use at a later date, rather than at once, the maternal risk is higher, because the mother is older during pregnancy. The risk to the child may be higher as well because of the need for in vitro fertilization (IVF). Pregnancy over age 40 often leads to complications such as gestational diabetes and pre-eclampsia. IVF may be associated with a higher risk of epigenetic abnormalities. Ethicists have upheld women's reproductive freedom while pointing out that so-called social freezing merely postpones social problems, rather than solving them. CONCLUSION Fertility preservation for non-medical reasons should be critically discussed, and decisions should be made on a case-by-case basis.
Resumo:
DNA methylation is essential for mammalian development and physiology. Here we report that the developmentally regulated H19 lncRNA binds to and inhibits S-adenosylhomocysteine hydrolase (SAHH), the only mammalian enzyme capable of hydrolysing S-adenosylhomocysteine (SAH). SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases that methylate diverse cellular components, including DNA, RNA, proteins, lipids and neurotransmitters. We show that H19 knockdown activates SAHH, leading to increased DNMT3B-mediated methylation of an lncRNA-encoding gene Nctc1 within the Igf2-H19-Nctc1 locus. Genome-wide methylation profiling reveals methylation changes at numerous gene loci consistent with SAHH modulation by H19. Our results uncover an unanticipated regulatory circuit involving broad epigenetic alterations by a single abundantly expressed lncRNA that may underlie gene methylation dynamics of development and diseases and suggest that this mode of regulation may extend to other cellular components.
Resumo:
Medulloblastoma is the most common malignant childhood brain tumor and is associated with a poor outcome. There is an urgent need to develop novel targeted therapeutic approaches for medulloblastoma, which will arise from an enhanced understanding of the disease at the molecular level. Medulloblastoma has been recognized to be a heterogeneous disease, and no recurrent cancer gene mutations have been found, although many of the mutations described so far affect key intracellular signaling pathways, such as sonic hedgehog (SHH) and Wnt/β-catenin. The PI3K/AKT/mTOR (PAM) signaling pathway controls key cellular responses, such as cell growth and proliferation, survival, migration and metabolism. Over the last decades, it has been recognized that this intracellular signaling pathway is frequently activated by genetic and epigenetic alterations in malignant brain tumors, including medulloblastoma. Clinical trials have started to evaluate the safety and efficacy of agents targeting this pathway in malignant brain tumors. Due to the complexity of the PAM signaling pathway, there remain significant difficulties in the development of novel therapeutic approaches. The future challenges in developing effective treatments for cancer patients include the development of predictive biomarkers and combinatorial approaches to effectively target multiple signal transduction pathways. In this review article, we will summarize the current knowledge about the role of PAM signaling in medulloblastoma and discuss the strategies that are currently being evaluated with targeted agents against this pathway.
Resumo:
The phosphoinositide 3-kinase (PI3K) family of signalling enzymes play a key role in the transduction of signals from activated cell surface receptors controlling cell growth and proliferation, survival, metabolism, and migration. The intracellular signalling pathway from activated receptors to PI3K and its downstream targets v-akt murine thymoma viral oncogene homolog (Akt) and mechanistic target of rapamycin (mTOR) is very frequently deregulated by genetic and epigenetic mechanisms in human cancer, including leukaemia and lymphoma. In the past decade, an arsenal of small molecule inhibitors of key enzymes in this pathway has been developed and evaluated in pre-clinical studies and clinical trials in cancer patients. These include pharmacological inhibitors of Akt, mTOR, and PI3K, some of which are approved for the treatment of leukaemia and lymphoma. The PI3K family comprises eight different catalytic isoforms in humans, which have been subdivided into three classes. Class I PI3K isoforms have been extensively studied in the context of human cancer, and the isoforms p110α and p110δ are validated drug targets. The recent approval of a p110δ-specific PI3K inhibitor (idelalisib/Zydelig®) for the treatment of selected B cell malignancies represents the first success in developing these molecules into anti-cancer drugs. In addition to PI3K inhibitors, mTOR inhibitors are intensively studied in leukaemia and lymphoma, and temsirolimus (Torisel®) is approved for the treatment of a type of lymphoma. Based on these promising results it is hoped that additional novel PI3K pathway inhibitors will in the near future be further developed into new drugs for leukaemia and lymphoma.
Resumo:
Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus.