53 resultados para cell surface receptor


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Whisker follicles have multiple stem cell niches, including epidermal stem cells in the bulge as well as neural crest-derived stem cells and mast cell progenitors in the trabecular region. The neural crest-derived stem cells are a pool of melanocyte precursors. Previously, we found that the extracellular matrix glycoproteins tenascin-C and tenascin-W are expressed near CD34-positive cells in the trabecular stem cell niche of mouse whisker follicles. Here, we analyzed whiskers from tenascin-C knockout mice and found intrafollicular adipocytes and supernumerary mast cells. As Wnt/β-catenin signaling promotes melanogenesis and suppresses the differentiation of adipocytes and mast cells, we analyzed β-catenin subcellular localization in the trabecular niche. We found cytoplasmic and nuclear β-catenin in wild-type mice reflecting active Wnt/β-catenin signaling, whereas β-catenin in tenascin-C knockout mice was mostly cell membrane-associated and thus transcriptionally inactive. Furthermore, cells expressing the Wnt/β-catenin target gene cyclin D1 were enriched in the CD34-positive niches of wild-type compared to tenascin-C knockout mice. We then tested the effects of tenascins on this signaling pathway. We found that tenascin-C and tenascin-W can be co-precipitated with Wnt3a. In vitro, substrate bound tenascins promoted β-catenin-mediated transcription in the presence of Wnt3a, presumably due to the sequestration and concentration of Wnt3a near the cell surface. We conclude that the presence of tenascin-C in whiskers assures active Wnt/β-catenin signaling in the niche thereby maintaining the stem cell pool and suppressing aberrant differentiation, while in the knockout mice with reduced Wnt/β-catenin signaling, stem cells from the trabecular niche can differentiate into ectopic adipocytes and mast cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The RNase activity of the envelope glycoprotein E(rns) of the pestivirus bovine viral diarrhea virus (BVDV) is required to block type I interferon (IFN) synthesis induced by single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA) in bovine cells. Due to the presence of an unusual membrane anchor at its C terminus, a significant portion of E(rns) is also secreted. In addition, a binding site for cell surface glycosaminoglycans is located within the C-terminal region of E(rns). Here, we show that the activity of soluble E(rns) as an IFN antagonist is not restricted to bovine cells. Extracellularly applied E(rns) protein bound to cell surface glycosaminoglycans and was internalized into the cells within 1 h of incubation by an energy-dependent mechanism that could be blocked by inhibitors of clathrin-dependent endocytosis. E(rns) mutants that lacked the C-terminal membrane anchor retained RNase activity but lost most of their intracellular activity as an IFN antagonist. Surprisingly, once taken up into the cells, E(rns) remained active and blocked dsRNA-induced IFN synthesis for several days. Thus, we propose that E(rns) acts as an enzymatically active decoy receptor that degrades extracellularly added viral RNA mainly in endolysosomal compartments that might otherwise activate intracellular pattern recognition receptors (PRRs) in order to maintain a state of innate immunotolerance. IMPORTANCE The pestiviral RNase E(rns) was previously shown to inhibit viral ssRNA- and dsRNA-induced interferon (IFN) synthesis. However, the localization of E(rns) at or inside the cells, its species specificity, and its mechanism of interaction with cell membranes in order to block the host's innate immune response are still largely unknown. Here, we provide strong evidence that the pestiviral RNase E(rns) is taken up within minutes by clathrin-mediated endocytosis and that this uptake is mostly dependent on the glycosaminoglycan binding site located within the C-terminal end of the protein. Remarkably, the inhibitory activity of E(rns) remains for several days, indicating the very potent and prolonged effect of a viral IFN antagonist. This novel mechanism of an enzymatically active decoy receptor that degrades a major viral pathogen-associated molecular pattern (PAMP) might be required to efficiently maintain innate and, thus, also adaptive immunotolerance, and it might well be relevant beyond the bovine species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM) generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggest a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro. STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR, and fluorescence microscopy. STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL)-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR) signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation was blocked. Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adenosine receptors are members of the G-protein coupled receptor (GPCR) family which represents the largest class of cell-surface proteins mediating cellular communication. As a result, GPCRs are formidable drug targets and it is estimated that approximately 30% of the marketed drugs act through members of this receptor class. There are four known subtypes of adenosine receptors: A1, A2A, A2B and A3. The adenosine A1 receptor, which is the subject of this presentation, mediates the physiological effects of adenosine in various tissues including the brain, heart, kidney and adipocytes. In the brain for instance, its role in epilepsy and ischemia has been the focus of many studies. Previous attempts to study the biosynthesis, trafficking and agonist-induced internalisation of the adenosine A1 receptor in neurons using fluorescent protein-receptor fusion constructs have been hampered by the sheer size of the fluorescent protein (GFP) that ultimately affected the function of the receptor. We have therefore initiated a research programme to develop small molecule fluorescent agonists that selectively activate the adenosine A1 receptor. Our probe design is based on the endogenous ligand adenosine and the known unselective adenosine receptor agonist NECA. We have synthesised a small library of non-fluorescent adenosine derivatives that have different cyclic and bicyclic moieties at the 6 position of the purine ring and have evaluated the pharmacology of these compounds using a yeast-based assay. This analysis revealed compounds with interesting behaviour, i.e. exhibiting subtype-selectivity and biased signalling, that can be potentially used as tool compounds in their own right for cellular studies of the adenosine A1 receptor. Furthermore, we have also linked fluorescent dyes to the purine ring and discovered fluorescent compounds that can activate the adenosine A1 receptor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Divalent metal transporter-1 (SLC11A2/DMT1) uses the H+ electrochemical gradient as the driving force to transport divalent metal ions such as Fe2+, Mn2+ and others metals into mammalian cells. DMT1 is ubiquitously expressed, most notably in proximal duodenum, immature erythroid cells, brain and kidney. This transporter mediates H+-coupled transport of ferrous iron across the apical membrane of enterocytes. In addition, in cells such as to erythroid precursors, following transferrin receptor (TfR) mediated endocytosis; it mediates H+-coupled exit of ferrous iron from endocytic vesicles into the cytosol. Dysfunction of human DMT1 is associated with several pathologies such as iron deficiency anemia hemochromatosis, Parkinson's disease and Alzheimer's disease, as well as colorectal cancer and esophageal adenocarcinoma, making DMT1 an attractive target for drug discovery. In the present study, we performed a ligand-based virtual screening of the Princeton database (700,000 commercially available compounds) to search for pharmacophore shape analogs of recently reported DMT1 inhibitors. We discovered a new compound, named pyrimidinone 8, which mediates a reversible linear non-competitive inhibition of human DMT1 (hDMT1) transport activity with a Ki of ∼20 μM. This compound does not affect hDMT1 cell surface expression and shows no dependence on extracellular pH. To our knowledge, this is the first experimental evidence that hDMT1 can be allosterically modulated by pharmacological agents. Pyrimidinone 8 represents a novel versatile tool compound and it may serve as a lead structure for the development of therapeutic compounds for pre-clinical assessment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE Rhinoviruses (RV) replicate in both upper and lower airway epithelial cells. We evaluated the possibility of using nasal epithelial cells (NEC) as surrogate of bronchial epithelial cells (BEC) for RV pathogenesis cell culture studies. METHODS We used primary paired NEC and BEC cultures established from healthy subjects and compared the replication of RV belonging to the major (RV16) and minor (RV1B) group, and the cellular antiviral and proinflammatory cytokine responses towards these viruses. We related antiviral and pro-inflammatory responses of NEC isolated from CF and COPD patients with those of BEC. RESULTS RV16 replication and major group surface receptor (ICAM-1) expression were higher in healthy NEC compared with BEC (P < 0.05); RV1B replication and minor group surface receptor (LDLR) expression were similar. Healthy NEC and BEC produced similar levels of IFN-β and IFN-λ2/3 upon RV infection or after simulation with poly(IC). IL-8 production was similar between healthy NEC and BEC. IL-6 release at baseline (P < 0.01) and upon infection with RV16 (P < 0.05) and poly(IC) stimulation (P < 0.05) was higher in NEC. RV1B viral load in NEC was related to RV1B viral load in BEC (r = 0.49, P = 0.01). There was a good correlation of IFN levels between NEC and BEC (r = 0.66, P = 0.0004 after RV1B infection). IL-8 production in NEC was related to IL-8 production in BEC (r = 0.48, P = 0.02 after RV1B infection). CONCLUSION NEC are a suitable alternative cellular system to BEC to study the pathophysiology of RV infections and particularly to investigate IFN responses induced by RV infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.