49 resultados para Quantitative Research


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. METHODS Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b(+)Prph2(Rd2) /J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. RESULTS Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. CONCLUSIONS Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. TRANSLATIONAL RELEVANCE The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large number of later Neolithic sites (3900–3500BC) in Switzerland, Southern Germany and Eastern France offer outstandingly well preserved archaeological materials from cultural layers. Due to the wide use of dendrochronology, settlement remains and artefact assemblages can now be placed into a precise and fixed chronological framework, thus presenting a unique case within prehistoric archaeology. In earlier research, chronological and regional units were constructed on the basis of pottery. These spacial and temporal units of typical pottery sets were understood as Neolithic cultures, as culturally more or less homogenous entities connected with (ethnic) identities. Today, with a larger data corpus of excavated settlements at hand, we can begin to understand that this period of the past was in fact characterised by a multitude of cultural entanglements and transformations. This is indicated by the occurrence of local and non-local pottery styles in one and the same settlement: for example typically local Cortaillod pottery is found together with NMB-styled pottery in settlements at Lake Neuchâtel or Michelsberg pottery is regularly occurring in settlements at Lake Constance where Pfyn pottery style is the typical local one. These and many more examples show that there must have been complex entanglements of social ties expanding between Eastern France, Southern Germany and the Swiss Plateau. Given these circumstances the former notions of Neolithic culture should be critically revised. Therefore, in late 2014, the Prehistoric Archaeology Department at the Archaeological Institute of University of Berne started a four-year research project funded by Swiss National Science Foundation in late 2014: ‘Mobilities, Entanglements and Transformations in Neolithic Societies of the Swiss Plateau (3900-3500 BC)’. It’s objective is to address the topic sketched above by adopting a mixed methods research (MMR)-design combining qualitative and quantitative approaches from archaeology and archaeometry. The approach is theoretically based on Pierre Bourdieu’s reflexive sociology and his concept of habitus but includes further concepts of practice theories. By shifting the focus to the movement of people, ideas and things – to pottery production practices in contexts of mobility – a deeper understanding of the transformative capacities of encounters can be achieved. This opens the path for new insights of Neolithic societies including social, cultural and economic dynamics that were underestimated in former research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. OBJECTIVE To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. APPROACH & RESULTS Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including "graph energy" and "distance to farthest node". The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. CONCLUSIONS The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations.