72 resultados para Non-continuous Seepage Flow
Resumo:
INTRODUCTION: The simple bedside method for sampling undiluted distal pulmonary edema fluid through a normal suction catheter (s-Cath) has been experimentally and clinically validated. However, there are no data comparing non-bronchoscopic bronchoalveolar lavage (mini-BAL) and s-Cath for assessing lung inflammation in acute hypoxaemic respiratory failure. We designed a prospective study in two groups of patients, those with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and those with acute cardiogenic lung edema (ACLE), designed to investigate the clinical feasibility of these techniques and to evaluate inflammation in both groups using undiluted sampling obtained by s-Cath. To test the interchangeability of the two methods in the same patient for studying the inflammation response, we further compared mini-BAL and s-Cath for agreement of protein concentration and percentage of polymorphonuclear cells (PMNs). METHODS: Mini-BAL and s-Cath sampling was assessed in 30 mechanically ventilated patients, 21 with ALI/ARDS and 9 with ACLE. To analyse agreement between the two sampling techniques, we considered only simultaneously collected mini-BAL and s-Cath paired samples. The protein concentration and polymorphonuclear cell (PMN) count comparisons were performed using undiluted sampling. Bland-Altman plots were used for assessing the mean bias and the limits of agreement between the two sampling techniques; comparison between groups was performed by using the non-parametric Mann-Whitney-U test; continuous variables were compared by using the Student t-test, Wilcoxon signed rank test, analysis of variance or Student-Newman-Keuls test; and categorical variables were compared by using chi-square analysis or Fisher exact test. RESULTS: Using protein content and PMN percentage as parameters, we identified substantial variations between the two sampling techniques. When the protein concentration in the lung was high, the s-Cath was a more sensitive method; by contrast, as inflammation increased, both methods provided similar estimates of neutrophil percentages in the lung. The patients with ACLE showed an increased PMN count, suggesting that hydrostatic lung edema can be associated with a concomitant inflammatory process. CONCLUSIONS: There are significant differences between the s-Cath and mini-BAL sampling techniques, indicating that these procedures cannot be used interchangeably for studying the lung inflammatory response in patients with acute hypoxaemic lung injury.
Resumo:
The effect of whole-body vibration dosage on leg blood flow was investigated. Nine healthy young adult males completed a set of 14 random vibration and non-vibration exercise bouts whilst squatting on a Galileo 900 plate. Six vibration frequencies ranging from 5 to 30 Hz (5 Hz increments) were used in combination with a 2.5 mm and 4.5 mm amplitude to produce twelve 1-min vibration bouts. Subjects also completed two 1-min bouts where no vibration was applied. Systolic and diastolic diameters of the common femoral artery and blood cell velocity were measured by an echo Doppler ultrasound in a standing or rest condition prior to the bouts and during and after each bout. Repeated measures MANOVAs were used in the statistical analysis. Compared with the standing condition, the exercise bouts produced a four-fold increase in mean blood cell velocity (P<0.001) and a two-fold increase in peak blood cell velocity (P<0.001). Compared to the non-vibration bouts, frequencies of 10-30 Hz increased mean blood cell velocity by approximately 33% (P<0.01) whereas 20-30 Hz increased peak blood cell velocity by approximately 27% (P<0.01). Amplitude was additive to frequency but only achieved significance at 30 Hz (P<0.05). Compared with the standing condition, squatting alone produced significant increases in mean and peak blood cell velocity (P<0.001). The results show leg blood flow increased during the squat or non-vibration bouts and systematically increased with frequency in the vibration bouts.
Resumo:
BACKGROUND AND AIMS: The splanchnic circulation has an important function in the body under both physiological and pathophysiological conditions. Despite its importance, no reliable noninvasive procedures for estimating splanchnic circulation have been established. The aim of this study was to evaluate MRI as a tool for assessing intra-abdominal blood flows of the aorta, portal vein (VPO) and the major intestinal and hepatic vessels. METHODS: In nine healthy volunteers, the proximal aorta (AOP) and distal abdominal aorta (AOD), superior mesenteric artery (SAM), celiac trunk (CTR), hepatic arteries (common and proper hepatic arteries, AHC and AHP, respectively), and VPO were localized on contrast-enhanced magnetic resonance angiography images. Volumetric flow was measured using a two-dimensional cine echocardiogram-gated phase contrast technique. Measurements were taken before and 30 min after continuous intravenous infusion of somatostatin (250 microg/h) and were independently evaluated by two investigators. RESULTS: Blood flow measured by MRI in the VPO, SAM, AOP, AHP, and CTR significantly decreased after drug infusion. Flows in the AOD and AHC showed a tendency to decrease (P>0.05). Interrater agreement on flows in MRI was very good for large vessels (VPO, AOP, and AOD), with a concordance correlation coefficient of 0.94, as well as for smaller vessels such as the CTR, AHC, AHP, and SAM (concordance correlation coefficient =0.78). CONCLUSION: Somatostatin-induced blood flow changes in the splanchnic region were reliably detected by MRI. MRI may be useful for the noninvasive assessment of blood flow changes in the splanchnic region.
Resumo:
BACKGROUND: A precise, non-invasive, non-toxic, repeatable, convenient and inexpensive follow-up of renal transplants, especially following biopsies, is in the interest of nephrologists. Formerly, the rate of biopsies leading to AV fistulas had been underestimated. Imaging procedures suited to a detailed judgement of these vascular malformations are to be assessed. METHODS: Three-dimensional (3D) reconstruction techniques of ultrasound flow-directed and non-flow-directed energy mode pictures were compared with a standard procedure, gadolinium-enhanced nuclear magnetic resonance imaging angiography (MRA) using the phase contrast technique. RESULTS: Using B-mode and conventional duplex information, AV fistulas were localized in the upper pole of the kidney transplant of the index patient. The 3D reconstruction provided information about the exact localization and orientation of the fistula in relation to other vascular structures, and the flow along the fistula. The MRA provided localization and orientation information, but less functional information. Flow-directed and non-flow-directed energy mode pictures could be reconstructed to provide 3D information about vascular malformations in transplanted kidneys. CONCLUSION: In transplanted kidneys, 3D-ultrasound angiography may be equally as effective as MRA in localizing and identifying AV malformations. Advantages of the ultrasound method are that it is cheaper, non-toxic, non-invasive, more widely availability and that it even provides more functional information. Future prospective studies will be necessary to evaluate the two techniques further.
Resumo:
In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model. The model comprises a Compartmental Model (CM), which simulates the absorption of the glucose to the blood due to meal intakes, and a Neural Network (NN), which simulates the glucose-insulin kinetics. The NN is a Recurrent NN (RNN) trained with the Real Time Recurrent Learning (RTRL) algorithm. The output of the model consists of short term glucose predictions and provides input to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. For the development and the evaluation of the IIAS, data generated from a Mathematical Model (MM) of a Type 1 diabetes patient have been used. The proposed control strategy is evaluated at multiple meal disturbances, various noise levels and additional time delays. The results indicate that the implemented IIAS is capable of handling multiple meals, which correspond to realistic meal profiles, large noise levels and time delays.
Resumo:
A longitudinal bone survey was conducted in 86 female Wistar rats in order to assess mineral density kinetics from young age (5 weeks: 115 g) till late adulthood (64 weeks: 586 g). In vivo quantitative radiographic scanning was performed on the caudal vertebrae, taking trabecular mass as the parameter. Measurements were expressed as Relative Optical Density (ROD) units by means of a high resolution densitometric device. Results showed a progressive increase in mineral density throughout the life cycle, with a tendency to level in the higher weight range, indicating that progressive mineral aposition occurs in rats in dependency of age. This phenomenon, however, should be always considered within the context of continuous skeletal growth and related changes typical of this species. Twelve different animals were also examined following induction of articular inflammation with Freund's adjuvant in six of them. Bone survey conducted 12 to 18 days after inoculation revealed a significant (P less than 0.01) reduction in trabecular bone mass of scanned vertebrae in comparison with the weight-matched untreated controls. It is concluded that the in vivo quantitative assessment of bone density illustrated in this report represents a sensitive and useful tool for the long-term survey of naturally occurring or experimentally induced bone changes. Scanning of the same part of the skeleton can be repeated, thereby avoiding sacrifice of the animal and time-consuming preparation of post-mortem material.
Resumo:
Plant diversity has been shown to influence the water cycle of forest ecosystems by differences in water consumption and the associated effects on groundwater recharge. However, the effects of biodiversity on soil water fluxes remain poorly understood for native tree species plantations in the tropics. Therefore, we estimated soil water fluxes and assessed the effects of tree species and diversity on these fluxes in an experimental native tree species plantation in Sardinilla (Panama). The study was conducted during the wet season 2008 on plots of monocultures and mixtures of three or six tree species. Rainfall and soil water content were measured and evapotranspiration was estimated with the Penman-Monteith equation. Soil water fluxes were estimated using a simple soil water budget model considering water input, output, and soil water and groundwater storage changes and in addition, were simulated using the physically based one-dimensional water flow model Hydrus-1D. In general, the Hydrus simulation did not reflect the observed pressure heads, in that modeled pressure heads were higher compared to measured ones. On the other hand, the results of the water balance equation (WBE) reproduced observed water use patterns well. In monocultures, the downward fluxes through the 200 cm-depth plane were highest below Hura crepitans (6.13 mm day−1) and lowest below Luehea seemannii (5.18 mm day−1). The average seepage rate in monocultures (±SE) was 5.66 ± 0.18 mm day−1, and therefore, significantly higher than below six-species mixtures (5.49 ± 0.04 mm day−1) according to overyielding analyses. The three-species mixtures had an average seepage rate of 5.63 ± 0.12 mm day−1 and their values did not differ significantly from the average values of the corresponding species in monocultures. Seepage rates were driven by the transpiration of the varying biomass among the plots (r = 0.61, p = 0.017). Thus, a mixture of trees with different growth rates resulted in moderate seepage rates compared to monocultures of either fast growing or slow growing tree species. Our results demonstrate that tree-species specific biomass production and tree diversity are important controls of seepage rates in the Sardinilla plantation during the wet season.
Resumo:
Flow represents an optimal psychological state that is intrinsically rewarding. However, to date only a few studies have investigated the conditions for flow in sports. The present research aims to expand our understanding of the psychological factors that promote the flow experience in sports, focusing on the person-goal fit, or more precisely on the athletes’ situational and dispositional goal orientations. We hypothesize that a fit between an athlete’s situational and dispositional approach versus avoidance goal orientation should promote flow, whereas a non-fit will hinder flow during sports. In addition to the flow experience, we hypothesize that an athlete’s affective well-being is also affected by the person-goal fit. Here our assumptions are theoretically rooted in research on person-environment fit. An experimental study in an ecologically valid sport setting was conducted in order to draw causal conclusions and derive useful strategies for the practice of sports. Specifically, we investigated 67 male soccer players from a regional amateur league during a regular training session. They were randomly assigned to an approach or avoidance goal group and asked to take five penalty shots. Immediately afterwards, their flow experience and affective well-being during the penalty shootout were measured. As predicted, soccer players with a strong dispositional approach goal orientation experienced more flow and reported higher affective well-being when they were assigned to the approach goal. In contrast, soccer players with a strong dispositional avoidance goal orientation benefited from being assigned an avoidance goal in terms of their flow experience and affective well-being. The results are discussed critically with respect to their theoretical and practical implications.
Resumo:
Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size.
Resumo:
Degradation of non-volatile organic compounds-environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)-in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0m s(-1) (3200Lmin(-1)), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10Lmin(-1). Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10Hz or 50Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative "degradation" efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules.
Resumo:
AIMS To investigate a pressure-controlled intermittent coronary sinus occlusion (PICSO) system in an ischaemia/reperfusion model. METHODS AND RESULTS We randomly assigned 18 pigs subjected to 60 minutes ischaemia by left anterior descending (LAD) coronary artery balloon occlusion to PICSO (n=12, groups A and B) or to controls (n=6, group C). PICSO started 10 minutes before (group A), or 10 minutes after (group B) reperfusion and was maintained for 180 minutes. A continuous drop of distal LAD pressure was observed in group C. At 180 minutes of reperfusion, LAD diastolic pressure was significantly lower in group C compared to groups A and B (p=0.02). LAD mean pressure was significantly less than the systemic arterial mean pressure in group C (p=0.02), and the diastolic flow slope was flat, compared to groups A and B (p=0.03). IgG and IgM antibody deposition was significantly higher in ischaemic compared to non-ischaemic tissue in group C (p<0.05). Significantly more haemorrhagic lesions were seen in the ischaemic myocardium of group C, compared to groups A and B (p=0.002). The necrotic area differed non-significantly among groups. CONCLUSIONS PICSO was safe and effective in improving coronary perfusion pressure and reducing antibody deposition consistent with reduced microvascular obstruction and ischaemia/reperfusion injury.
Resumo:
Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh Sleep Quality Index, along with a polysomnography assessment to obtain the following measures: slow wave sleep, percentage rapid eye movement (REM) sleep, REM sleep latency, total arousal index, total sleep time, wake after sleep onset, sleep efficiency and apnea-hypopnea index. Bivariate correlations and follow-up multiple regressions examined how FMD related to subjective (i.e., Pittsburgh Sleep Quality Index scores) and objective (i.e., polysomnography-derived) indicators of sleep quality. After FMD showed bivariate correlations with Pittsburgh Sleep Quality Index scores, percentage REM sleep and REM latency, further examination with separate regression models indicated that these associations remained significant after adjustments for sex, age, race, hypertension, body mass index, apnea-hypopnea index, smoking and income (Ps < 0.05). Specifically, as FMD decreased, scores on the Pittsburgh Sleep Quality Index increased (indicating decreased subjective sleep quality) and percentage REM sleep decreased, while REM sleep latency increased (Ps < 0.05). Poorer subjective sleep quality and adverse changes in REM sleep were associated with diminished vasodilation, which could link sleep disturbances to cardiovascular disease.
Resumo:
Based on a dye tracer experiment in a sand tank we addressed the problem of local dispersion of conservative tracers in the unsaturated zone. The sand bedding was designed to have a defined spatial heterogeneity with a strong anisotropy. We estimated the parameters that characterize the local dispersion and dilution from concentration maps of a high spatial and temporal resolution obtained by image analysis. The plume spreading and mixing behavior was quantified on the basis of the coefficient of variation of the concentration and of the dilution index. The heterogeneous structure modified the flow pattern depending on water saturation. The shape of the tracer plumes revealed the structural signature of the sand bedding at low saturation only. In this case pronounced preferential flow was observed. At higher flow rates the structure remained hidden by a spatially almost homogeneous behavior of the plumes. In this context, we mainly discuss the mechanism of re-distributing a finite mass of inert solutes over a large volume, due to macro- and micro-heterogeneities of the structure. (C) 2001 Elsevier Science Ltd. AU rights reserved.
Resumo:
Background: A clinically relevant bleeding diathesis is a frequent diagnostic challenge, which sometimes remains unexplained despite extensive investigations. The aim of our work was to evaluate the diagnostic utility of functional platelet testing by flow cytometry in this context. Methods: In case of negative results after standard laboratory work-up, flow cytometric analysis (FCA) of platelet function was done. We performed analysis of surface glycoproteins (GP) Ibα, IIb, IIIa; P-selectin expression and PAC-1 binding after graded doses of ADP, collagen and thrombin; content/secretion of dense granules; ability to generate procoagulant platelets. Results: Out of 437 patients investigated with standard tests between January 2007 and December 2011, we identified 67 (15.3%) with high bleeding scores and non-diagnostic standard laboratory work-up including platelet aggregation studies. Among these patients FCA revealed some potentially causative platelet defects: decreased dense-granule content/secretion (n=13); decreased alpha-granule secretion induced by ADP (n=10), convulxin (n=4) or thrombin (n=3); decreased fibrinogen-receptor activation induced by ADP (n=11), convulxin (n=11) or thrombin (n=8); decreased generation of COAT-platelets, i.e. highly procoagulant platelets induced by simultaneous activation with collagen and thrombin (n=16). Conclusion: Our work confirms that storage pool defects are frequent in patients with a bleeding diathesis and normal coagulation and platelet aggregations studies. Additionally, flow cytometric analysis is able to identify discrete platelet activation defects. In particular, we show for the first time that a relevant proportion of these patients has an isolated impaired ability to generate COAT-platelets - a conceptually new defect in platelet procoagulant activity, that is missed by conventional laboratory work-up. © 2014 Clinical Cytometry Society.
Resumo:
When drilling ice cores deeper than ∼100 m, drill liquid is required to maintain ice-core quality and to limit borehole closure. Due to high-pressure air bubbles in the ice, the ice core can crack during drilling and core retrieval, typically at 600–1200 m depth in Greenland. Ice from this 'brittle zone' can be contaminated by drill liquid as it seeps through cracks into the core. Continuous flow analysis (CFA) systems are routinely used to analyse ice for chemical impurities, so the detection of drill liquid is important for validating accurate measurements and avoiding potential instrument damage. An optical detector was constructed to identify drill liquid in CFA tubing by ultraviolet absorption spectroscopy at a wavelength of 290 nm. The set-up was successfully field-tested in the frame of the NEEM ice-core drilling project in Greenland. A total of 27 cases of drill liquid contamination were identified during the analysis of 175 m of brittle zone ice. The analyses most strongly affected by drill liquid contamination include insoluble dust particles, electrolytic conductivity, ammonium, hydrogen peroxide and sulphate. This method may also be applied to other types of drill liquid used at other drill sites.