57 resultados para MAJOR CAPSID PROTEIN
Resumo:
The major bovine whey proteins, α-lactalbumin (α-LA) and β-lactoglobulin (β-LG), exhibit breed-specific genetic variation. The aim of this study was to identify possible new protein variants and determine the distribution of variants across a variety of 18 taurine and indicine cattle breeds applying a DNA-based sequencing approach. To this end, the open reading frames of the respective genes (LALBA and LGB) were sequenced in 476 animals. Within the LALBA gene, a previously unknown synonymous and a previously undesignated non-synonymous nucleotide exchange were identified. Furthermore, two known α-LA variants (A and B) and four known β-LG variants (A, B, C and W) were determined. The occurrence of typical indicine variants in some taurine cattle breeds, such as Suisse Eringer, German Hinterwälder and Hungarian Grey Steppe, further supports the hypothesis of ancient Bos indicus introgression into (peri-)alpine cattle breeds.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma), a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, including RNA metabolism, microRNA biogenesis and DNA repair. However, the precise cellular function of FUS remains unclear. Recently, mutations in the FUS gene have been found in ∼5% of familial Amyotrophic Lateral Sclerosis, a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are investigating the effects of DNA damage both in the presence or in the absence of FUS. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line expressing a doxycycline-induced shRNA targeting FUS, which specifically depletes the protein. We have found that FUS depletion induces an activation of the DNA damage response (DDR). However, treatment with genotoxic agents did not induce any strong changes in ATM (Ataxia Telangiectasia Mutated)-mediated DDR signaling. Interestingly, genotoxic treatment results in changes in the subcellular localization of FUS in normal cells. We are currently exploring on one hand the mechanism by which FUS depletion leads to DNA damage, and on the other the functional significance of FUS relocalization after genotoxic stress.
Resumo:
Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.
Resumo:
Mitochondrial protein import is essential for all eukaryotes and mediated by hetero-oligomeric protein translocases thought to be conserved within all eukaryotes. We have identified and analysed the function and architecture of the non-conventional outer membrane (OM) protein translocase in the early diverging eukaryote Trypanosoma brucei. It consists of six subunits that show no obvious homology to translocase components of other species. Two subunits are import receptors that have a unique topology and unique protein domains and thus evolved independently of the prototype receptors Tom20 and Tom70. Our study suggests that protein import receptors were recruited to the core of the OM translocase after the divergence of the major eukaryotic supergroups. Moreover, it links the evolutionary history of mitochondrial protein import receptors to the origin of the eukaryotic supergroups.
Resumo:
That gene transfer to plant cells is a temperature-sensitive process has been known for more than 50 years. Previous work indicated that this sensitivity results from the inability to assemble a functional T pilus required for T-DNA and protein transfer to recipient cells. The studies reported here extend these observations and more clearly define the molecular basis of this assembly and transfer defect. T-pilus assembly and virulence protein accumulation were monitored in Agrobacterium tumefaciens strain C58 at different temperatures ranging from 20 degrees C to growth-inhibitory 37 degrees C. Incubation at 28 degrees C but not at 26 degrees C strongly inhibited extracellular assembly of the major T-pilus component VirB2 as well as of pilus-associated protein VirB5, and the highest amounts of T pili were detected at 20 degrees C. Analysis of temperature effects on the cell-bound virulence machinery revealed three classes of virulence proteins. Whereas class I proteins (VirB2, VirB7, VirB9, and VirB10) were readily detected at 28 degrees C, class II proteins (VirB1, VirB4, VirB5, VirB6, VirB8, VirB11, VirD2, and VirE2) were only detected after cell growth below 26 degrees C. Significant levels of class III proteins (VirB3 and VirD4) were only detected at 20 degrees C and not at higher temperatures. Shift of virulence-induced agrobacteria from 20 to 28 or 37 degrees C had no immediate effect on cell-bound T pili or on stability of most virulence proteins. However, the temperature shift caused a rapid decrease in the amount of cell-bound VirB3 and VirD4, and VirB4 and VirB11 levels decreased next. To assess whether destabilization of virulence proteins constitutes a general phenomenon, levels of virulence proteins and of extracellular T pili were monitored in different A. tumefaciens and Agrobacterium vitis strains grown at 20 and 28 degrees C. Levels of many virulence proteins were strongly reduced at 28 degrees C compared to 20 degrees C, and T-pilus assembly did not occur in all strains except "temperature-resistant" Ach5 and Chry5. Virulence protein levels correlated well with bacterial virulence at elevated temperature, suggesting that degradation of a limited set of virulence proteins accounts for the temperature sensitivity of gene transfer to plants.
Resumo:
A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.
Resumo:
INTRODUCTION The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e(-/-) mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. METHODS Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e(-/-) mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. RESULTS Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e(-/-) mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e(-/-) cartilage explants. OA progression was significantly enhanced in the Tfap2e(-/-) mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e(-/-) articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. CONCLUSIONS We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.
Resumo:
BACKGROUND The early diagnosis of acute myocardial infarction (AMI) very soon after symptom onset remains a major clinical challenge, even when using high-sensitivity cardiac troponin (hs-cTnT). METHODS AND RESULTS We investigated the incremental value of heart-type fatty acid-binding protein (hFABP) in a pre-specified subgroup analysis of patients presenting with suspected AMI within 1 h of symptom onset to the emergency department (ED) in a multicentre study. HFABP was measured in a blinded fashion. Two independent cardiologists using all available clinical information, including hs-cTnT, adjudicated the final diagnosis. Overall, 1411 patients were enrolled, of whom 105 patients presented within 1 h of symptom onset. Of these, 34 patients (32.4%) had AMI. The diagnostic accuracy as quantified by the area under the receiver-operating characteristics curve (AUC) of hFABP was high (0.84 (95% CI 0.74-0.94)). However, the additional use of hFABP only marginally increased the diagnostic accuracy of hs-cTnT (AUC 0.88 (95% CI 0.81-0.94) for hs-cTnT alone to 0.90 (95% CI 0.83-0.98) for the combination; p=ns). After the exclusion of 18 AMI patients with ST-segment elevation, similar results were obtained. Among the 16 AMI patients without ST-segment elevation, six had normal hs-cTnT at presentation. Of these, hFABP was elevated in two (33.3%) patients. CONCLUSIONS hFABP does not seem to significantly improve the early diagnostic accuracy of hs-cTnT in the important subgroup of patients with suspected AMI presenting to the ED very early after symptom onset.
Resumo:
We have analyzed the effect of antibodies (Abs) directed against major histocompatibility complex (MHC) class II Abs on the proliferation of Theileria parva-infected (Tpi) T cells. Anti-MHC class II Abs exert a direct effect on Tpi T cells causing an acute block in their proliferation. The inhibition does not involve apoptosis and is also entirely reversible. The rapid arrest of DNA synthesis caused by anti-MHC class II Abs is not due to interference with the state of activation of the T cells since the transcriptional activator NF-kappa B remains activated in arrested cells. In addition, interleukin 2 (IL-2), IL-2R, and c-myc gene expression are also unaffected. By analyzing the cell-cycle phase distribution of inhibited cells, it could be shown that cells in all phases of the cell cycle are inhibited. The signal transduction pathway that results in inhibition was shown to be independent of protein kinase C and extracellular Ca2+. Tyrosine kinase inhibitors, however, partly reduced the level of inhibition and, conversely, phosphatase inhibitors enhanced it. The possible relevance of this phenomenon in other systems is discussed.
Resumo:
Cattle immunised with a recombinant form of p67, the major surface antigen of Theileria parva sporozoites, have been shown to be protected against parasite challenge. In an attempt to simplify the immunisation procedure live attenuated Salmonella strains expressing p67 have been constructed and used to induce anti-p67 immune responses in cattle. All animals immunised with these strains developed strong antibody responses to p67. Specific T cell responses could be detected in the majority of immunised cattle. Challenge with T. parva sporozoites revealed a significant level of protection in immunised calves compared to naive control animals or animals inoculated with non-recombinant attenuated Salmonella.
Resumo:
During infection, the intestinal protozoan parasite Giardia lamblia undergoes continuous antigenic variation which is determined by diversification of the parasite's major surface antigen, named VSP (variant surface protein). One member from this protein family, VSP H7, is expressed by G. lamblia clone GS/M-83-H7. In the present study, we characterised a highly antigenic portion of VSP H7 which is positioned inside a 130 amino acid C-terminal region of the protein. This region overlaps with a cysteine-rich motif that is rather conserved within the VSP family. Detailed molecular dissection of the antigenic portion monitored a 12 amino acid peptidyl structure which constitutes a non-conformational epitope of VSP H7. In the murine host, this epitope is recognised relatively early (before day 10 p.i.) during infection and stimulates a strong intestinal immunoglobulin A response. At late infective stages (after day 10 p.i.) this immune reaction is progressively complemented by reactions against 'late' antigenic epitopes which are also located inside the 130 amino acid antigenic portion but in closer proximity to the C-terminal end of VSP H7 than the 12 amino acid epitope. Both the high antigenicity and the conserved character suggest that the 12 amino acid epitope is a key factor within the immunological interplay between G. lamblia and the experimental murine host.
Resumo:
Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational changes that allow membrane insertion leading to pore formation and potentially cell death. Aerolysin, produced by the human pathogen Aeromonas hydrophila, is the founding member of a major PFT family found throughout all kingdoms of life. We report cryo-electron microscopy structures of three conformational intermediates and of the final aerolysin pore, jointly providing insight into the conformational changes that allow pore formation. Moreover, the structures reveal a protein fold consisting of two concentric β-barrels, tightly kept together by hydrophobic interactions. This fold suggests a basis for the prion-like ultrastability of aerolysin pore and its stoichiometry.