114 resultados para Intestinal microbiota
Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes
Resumo:
The gastrointestinal tract is heavily colonized with commensal microbes with the concentration of bacteria increasing longitudinally down the length of the intestine. Bacteria are also spatially distributed transversely from the epithelial surface to the intestinal lumen with the inner mucus layer normally void of bacteria. Maintenance of this equilibrium is extremely important for human health and, as the dominant immunoglobulin at mucosal sites, IgA influences mutualism between the host and its normal microbiota. In this review we focus on the links between immune and microbial geography of the mammalian intestinal tract.
Resumo:
Microbial exposure following birth profoundly impacts mammalian immune system development. Microbiota alterations are associated with increased incidence of allergic and autoimmune disorders with elevated serum IgE as a hallmark. The previously reported abnormally high serum IgE levels in germ-free mice suggests that immunoregulatory signals from microbiota are required to control basal IgE levels. We report that germ-free mice and those with low-diversity microbiota develop elevated serum IgE levels in early life. B cells in neonatal germ-free mice undergo isotype switching to IgE at mucosal sites in a CD4 T-cell- and IL-4-dependent manner. A critical level of microbial diversity following birth is required in order to inhibit IgE induction. Elevated IgE levels in germ-free mice lead to increased mast-cell-surface-bound IgE and exaggerated oral-induced systemic anaphylaxis. Thus, appropriate intestinal microbial stimuli during early life are critical for inducing an immunoregulatory network that protects from induction of IgE at mucosal sites.
Resumo:
Intestinal bacterial metabolites are an important communication tool between the host immune system and the commensal microbiota to establish mutualism. In a recent paper published in Science, Wendy Garrett and her colleagues report an exciting role of the three most abundant microbial-derived short-chain fatty acids (SCFA), acetic acid, propionic acid and butyric acid, in colonic regulatory T cell (cTreg) homeostasis.
Resumo:
A prerequisite for establishment of mutualism between the host and the microbial community that inhabits the large intestine is the stringent mucosal compartmentalization of microorganisms. Microbe-loaded dendritic cells trafficking through lymphatics are arrested at the mesenteric lymph nodes, which constitute the firewall of the intestinal lymphatic circulation. We show in different mouse models that the liver, which receives the intestinal venous blood circulation, forms a vascular firewall that captures gut commensal bacteria entering the bloodstream during intestinal pathology. Phagocytic Kupffer cells in the liver of mice clear commensals from the systemic vasculature independently of the spleen through the liver's own arterial supply. Damage to the liver firewall in mice impairs functional clearance of commensals from blood, despite heightened innate immunity, resulting in spontaneous priming of nonmucosal immune responses through increased systemic exposure to gut commensals. Systemic immune responses consistent with increased extraintestinal commensal exposure were found in humans with liver disease (nonalcoholic steatohepatitis). The liver may act as a functional vascular firewall that clears commensals that have penetrated either intestinal or systemic vascular circuits.
Resumo:
Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int-/-) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC.
Resumo:
Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand.
Resumo:
Although tumor necrosis factor (alpha) (TNF) exerts proinflammatory activities in a variety of diseases, including inflammatory bowel disease, there is increasing evidence for antiinflammatory actions of TNF. In contrast, glucocorticoids (GCs) are steroid hormones that suppress inflammation, at least in part by regulating the expression and action of TNF. We report that TNF induces extraadrenal production of immunoregulatory GCs in the intestinal mucosa during acute intestinal inflammation. The absence of TNF results in a lack of colonic GC synthesis and exacerbation of dextran sodium sulfate-induced colitis. TNF seems to promote local steroidogenesis by directly inducing steroidogenic enzymes in intestinal epithelial cells. Therapeutic administration of TNF induces GC synthesis in oxazolone-induced colitis and ameliorates intestinal inflammation, whereas inhibition of intestinal GC synthesis abrogates the therapeutic effect of TNF. These data show that TNF suppresses the pathogenesis of acute intestinal inflammation by promoting local steroidogenesis.
Resumo:
Stringent control of immune responses in the intestinal mucosa is critical for the maintenance of immune homeostasis and prevention of tissue damage, such as observed during inflammatory bowel disease. Intestinal epithelial cells, primarily thought to form a simple physical barrier, critically regulate intestinal immune cell functions by producing immunoregulatory glucocorticoids on T-cell activation. In this study we investigated whether stimulation of cells of the innate immune system results in the induction of intestinal glucocorticoids synthesis and what role TNF-alpha plays in this process. Stimulation of the innate immune system with lipopolysaccharide (LPS) led to an up-regulation of colonic steroidogenic enzymes and the induction of intestinal glucocorticoid synthesis. The observed induction was dependent on macrophage effector functions, as depletion of macrophages using clodronate-containing liposomes, but not absence of T and B cells, inhibited intestinal glucocorticoid synthesis. LPS-induced glucocorticoid synthesis was critically dependent on TNF-alpha as it was significantly decreased in TNF-alpha-deficient animals. Both TNF receptor-1 and -2 were found to be equally involved in LPS- and T-cell-induced intestinal GC synthesis. These results describe a novel and critical role of TNF-alpha in immune cell-induced intestinal glucocorticoid synthesis.
Resumo:
Mammals contain an enormous load of commensal microbes in the lower intestine, which induce adaptive responses in the host immune system that ensure mutual coexistence of the host and its microbial passengers. The main way of studying how the host responds to commensal colonization has been to compare animals kept in entirely germ-free conditions and their colonized counterparts. We present an overview of our development of a reversible colonization system, whereby germ free animals can be treated with live commensal bacteria that do not persist in the host, so it becomes germ free again. We describe how this system has been used to demonstrate that there is little or no immune memory for specific IgA induction in the intestinal mucosal immune system by commensal intestinal bacteria.
Resumo:
Garlic extracts have been shown to decrease drug exposure for saquinavir, a P-glycoprotein and cytochrome P450 3A4 substrate. In order to explore the underlying mechanisms and to study the effects of garlic on pre-systemic drug elimination, healthy volunteers were administered garlic extract for 21 days. Prior to and at the end of this period, expression of duodenal P-glycoprotein and cytochrome P450 3A4 protein were assayed and normalized to villin, while hepatic cytochrome P450 3A4 function and simvastatin, pravastatin and saquinavir pharmacokinetics were also evaluated. Ingestion of garlic extract increased expression of duodenal P-glycoprotein to 131% (95% CI, 105-163%), without increasing the expression of cytochrome P450 3A4 which amounted to 87% (95% CI, 67-112%), relative to baseline in both cases. For the erythromycin breath test performed, the average result was 96% (95% CI, 83-112%). Ingestion of garlic extract had no effect on drug and metabolite AUCs following a single dose of simvastatin or pravastatin, although the average area under the plasma concentration curve (AUC) of saquinavir decreased to 85% (95% CI, 66-109%), and changes in intestinal P-glycoprotein expression negatively correlated with this change. In conclusion, garlic extract induces intestinal expression of P-glycoprotein independent of cytochrome P450 3A4 in human intestine and liver.
Resumo:
Energy-dependent intestinal calcium absorption is important for the maintenance of calcium and bone homeostasis, especially when dietary calcium supply is restricted. The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is a crucial regulator of this process and increases the expression of the transient receptor potential vanilloid 6 (Trpv6) calcium channel that mediates calcium transfer across the intestinal apical membrane. Genetic inactivation of Trpv6 in mice (Trpv6(-/-)) showed, however, that TRPV6 is redundant for intestinal calcium absorption when dietary calcium content is normal/high and passive diffusion likely contributes to maintain normal serum calcium levels. On the other hand, Trpv6 inactivation impaired the increase in intestinal calcium transport following calcium restriction, however without resulting in hypocalcemia. A possible explanation is that normocalcemia is maintained at the expense of bone homeostasis, a hypothesis investigated in this study. In this study, we thoroughly analyzed the bone phenotype of Trpv6(-/-) mice receiving a normal (approximately 1%) or low (approximately 0.02%) calcium diet from weaning onwards using micro-computed tomography, histomorphometry and serum parameters. When dietary supply of calcium is normal, Trpv6 inactivation did not affect growth plate morphology, bone mass and remodeling parameters in young adult or aging mice. Restricting dietary calcium had no effect on serum calcium levels and resulted in a comparable reduction in bone mass accrual in Trpv6(+/+) and Trpv6(-/-) mice (-35% and 45% respectively). This decrease in bone mass was associated with a similar increase in bone resorption, whereas serum osteocalcin levels and the amount of unmineralized bone matrix were only significantly increased in Trpv6(-/-) mice. Taken together, our findings indicate that TRPV6 contributes to intestinal calcium transport when dietary calcium supply is limited and in this condition indirectly regulates bone formation and/or mineralization.
Resumo:
In questionable cystic fibrosis (CF), mild or monosymptomatic phenotypes frequently cause diagnostic difficulties despite detailed algorithms. CF transmembrane conductance regulator (CFTR)-mediated ion transport can be studied ex vivo in rectal biopsies by intestinal current measurement (ICM).
Resumo:
Intestinal mononuclear phagocytes (iMNP) are critically involved in mucosal immunity and tissue homeostasis. Two major non-overlapping populations of iMNP have been identified in mice. CD103(+) iMNP represent a migratory population capable of inducing tolerogenic responses, whereas CX3CR1(+) iMNP are resident cells with disease-promoting potential. CX3CR1(+) iMNP can further be subdivided based on differential expression of CX3CR1. Using CX3CR1(GFP/+) ×RAG2(-/-) mice, we demonstrate that CX3CR1(hi) and CX3CR1(lo) iMNP clearly differ with respect to their morphological and functional properties. Compared with CX3CR1(hi) iMNP, CX3CR1(lo) iMNP are polarised towards pro-inflammatory responses already under homeostatic conditions. During a CD4(+) T-cell-induced colitis, CX3CR1(lo) cells accumulate in the inflamed mucosa and upregulate the expression of pro-inflammatory cytokines and triggering receptor expressed on myeloid cells-1 (TREM-1). In contrast, CX3CR1(hi) iMNP retain their non-inflammatory profile even during intestinal inflammation. These findings identify two functionally distinct iMNP subsets based on differential expression of CX3CR1 and indicate an unanticipated stability of iMNP.
Resumo:
Serotonin-producing tumors of the pancreas are rare endocrine neoplasms composed of enterochromaffin (EC) cells that have been mainly described in the literature as case reports. This study analyzes the clinicopathologic features of a series of pancreatic EC cell neoplasms and their similarities to and differences from intestinal EC cell tumors.