52 resultados para Interaction modeling. Model-based development. Interaction evaluation.
Resumo:
Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.
Resumo:
Background: Communication in cancer care has become a major topic of interest. Since there is evidence that ineffective communication affects both patients and oncology clinicians (physicians and nurses), so-called communication skills trainings (CSTs) have been developed over the last decade. While these trainings have been demonstrated to be effective, there is an important heterogeneity with regard to implementation and with regard to evidence of different aspects of CST. Methods: In order to review and discuss the scientific literature on CST in oncology and to formulate recommendations, the Swiss Cancer League has organised a consensus meeting with European opinion leaders and experts in the field of CST, as well as oncology clinicians, representatives of oncology societies and patient organisations. On the basis of a systematic review and a meta-analysis, recommendations have been developed and agreed upon. Results: Recommendations address (i) the setting, objectives and participants of CST, (ii) its content and pedagogic tools, (iii) organisational aspects, (iv) outcome and (v) future directions and research. Conclusion: This consensus meeting, on the basis of European expert opinions and a systematic review and meta-analysis, defines key elements for the current provision and future development and evaluation of CST in oncology.
Resumo:
Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the nationwide Swiss radon database collected between 1994 and 2004. Of these, 80% randomly selected measurements were used for model development and the remaining 20% for an independent model validation. A multivariable log-linear regression model was fitted and relevant predictors selected according to evidence from the literature, the adjusted R², the Akaike's information criterion (AIC), and the Bayesian information criterion (BIC). The prediction model was evaluated by calculating Spearman rank correlation between measured and predicted values. Additionally, the predicted values were categorised into three categories (50th, 50th-90th and 90th percentile) and compared with measured categories using a weighted Kappa statistic. The most relevant predictors for indoor radon levels were tectonic units and year of construction of the building, followed by soil texture, degree of urbanisation, floor of the building where the measurement was taken and housing type (P-values <0.001 for all). Mean predicted radon values (geometric mean) were 66 Bq/m³ (interquartile range 40-111 Bq/m³) in the lowest exposure category, 126 Bq/m³ (69-215 Bq/m³) in the medium category, and 219 Bq/m³ (108-427 Bq/m³) in the highest category. Spearman correlation between predictions and measurements was 0.45 (95%-CI: 0.44; 0.46) for the development dataset and 0.44 (95%-CI: 0.42; 0.46) for the validation dataset. Kappa coefficients were 0.31 for the development and 0.30 for the validation dataset, respectively. The model explained 20% overall variability (adjusted R²). In conclusion, this residential radon prediction model, based on a large number of measurements, was demonstrated to be robust through validation with an independent dataset. The model is appropriate for predicting radon level exposure of the Swiss population in epidemiological research. Nevertheless, some exposure misclassification and regression to the mean is unavoidable and should be taken into account in future applications of the model.
Resumo:
A confocal imaging and image processing scheme is introduced to visualize and evaluate the spatial distribution of spectral information in tissue. The image data are recorded using a confocal laser-scanning microscope equipped with a detection unit that provides high spectral resolution. The processing scheme is based on spectral data, is less error-prone than intensity-based visualization and evaluation methods, and provides quantitative information on the composition of the sample. The method is tested and validated in the context of the development of dermal drug delivery systems, introducing a quantitative uptake indicator to compare the performances of different delivery systems is introduced. A drug penetration study was performed in vitro. The results show that the method is able to detect, visualize and measure spectral information in tissue. In the penetration study, uptake efficiencies of different experiment setups could be discriminated and quantitatively described. The developed uptake indicator is a step towards a quantitative assessment and, in a more general view apart from pharmaceutical research, provides valuable information on tissue composition. It can potentially be used for clinical in vitro and in vivo applications.
Resumo:
BACKGROUND: Recent studies have focused on mechanical thrombectomy as a means to reduce the time required for revascularization and increase the revascularization rate in acute stroke. To date no systematic evaluation has been made of the different mechanical devices in this novel and fast-developing field of endovascular interventions. To facilitate such evaluations, we developed a specific in vivo model for mechanical thrombectomy that allows visualization of dislocation or fragmentation of the thrombus during angiographic manipulation. METHODS: Angiography and embolization with a preformed thrombus was performed in 8 swine. The thrombus was generated by mixing 25 IU bovine thrombin and 10 mL autologous blood. For visualization during angiography, 1 g barium sulfate was added. RESULTS: The preformed thrombus exhibited mechanical stability, reproducibility, and high radiographic absorption, providing excellent visibility during angiography. The setting allowed selective embolization of targeted vessels without thrombus fragmentation. Despite the application of barium sulfate no local or systemic reaction occurred. Histologic evaluation revealed no intimal damage caused by the thrombus or contrast agent washout. CONCLUSION: The model presented here allows selective and reliable thromboembolization of vessels that reproduce the anatomic and hemodynamic situation in acute cerebrovascular stroke. It permits visualization of the thrombus during angiography and intervention, providing unique insight into the behavior of both thrombus and device, which is potentially useful in the development and evaluation of mechanical clot retrieval in acute cerebrovascular stroke.
Resumo:
Point Distribution Models (PDM) are among the most popular shape description techniques and their usefulness has been demonstrated in a wide variety of medical imaging applications. However, to adequately characterize the underlying modeled population it is essential to have a representative number of training samples, which is not always possible. This problem is especially relevant as the complexity of the modeled structure increases, being the modeling of ensembles of multiple 3D organs one of the most challenging cases. In this paper, we introduce a new GEneralized Multi-resolution PDM (GEM-PDM) in the context of multi-organ analysis able to efficiently characterize the different inter-object relations, as well as the particular locality of each object separately. Importantly, unlike previous approaches, the configuration of the algorithm is automated thanks to a new agglomerative landmark clustering method proposed here, which equally allows us to identify smaller anatomically significant regions within organs. The significant advantage of the GEM-PDM method over two previous approaches (PDM and hierarchical PDM) in terms of shape modeling accuracy and robustness to noise, has been successfully verified for two different databases of sets of multiple organs: six subcortical brain structures, and seven abdominal organs. Finally, we propose the integration of the new shape modeling framework into an active shape-model-based segmentation algorithm. The resulting algorithm, named GEMA, provides a better overall performance than the two classical approaches tested, ASM, and hierarchical ASM, when applied to the segmentation of 3D brain MRI.
Resumo:
This chapter proposed a personalized X-ray reconstruction-based planning and post-operative treatment evaluation framework called iJoint for advancing modern Total Hip Arthroplasty (THA). Based on a mobile X-ray image calibration phantom and a unique 2D-3D reconstruction technique, iJoint can generate patient-specific models of hip joint by non-rigidly matching statistical shape models to the X-ray radiographs. Such a reconstruction enables a true 3D planning and treatment evaluation of hip arthroplasty from just 2D X-ray radiographs whose acquisition is part of the standard diagnostic and treatment loop. As part of the system, a 3D model-based planning environment provides surgeons with hip arthroplasty related parameters such as implant type, size, position, offset and leg length equalization. With this newly developed system, we are able to provide true 3D solutions for computer assisted planning of THA using only 2D X-ray radiographs, which is not only innovative but also cost-effective.