59 resultados para Histone hyperacetylation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int-/-) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polypeptide composition of the U7 small nuclear ribonucleoprotein (snRNP) involved in histone messenger RNA (mRNA) 3' end formation has recently been elucidated. In contrast to spliceosomal snRNPs, which contain a ring-shaped assembly of seven so-called Sm proteins, in the U7 snRNP the Sm proteins D1 and D2 are replaced by U7-specific Sm-like proteins, Lsm10 and Lsm11. This polypeptide composition and the unusual structure of Lsm11, which plays a role in histone RNA processing, represent new themes in the biology of Sm/Lsm proteins. Moreover this structure has important consequences for snRNP assembly that is mediated by two complexes containing the PRMT5 methyltransferase and the SMN (survival of motor neurons) protein, respectively. Finally, the ability to alter this polypeptide composition by a small mutation in U7 snRNA forms the basis for using modified U7 snRNA derivatives to alter specific pre-mRNA splicing events, thereby opening up a new way for antisense gene therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The U7 snRNP involved in histone RNA 3' end processing is related to but biochemically distinct from spliceosomal snRNPs. In vertebrates, the Sm core structure assembling around the noncanonical Sm-binding sequence of U7 snRNA contains only five of the seven standard Sm proteins. The missing Sm D1 and D2 subunits are replaced by U7-specific Sm-like proteins Lsm10 and Lsm11, at least the latter of which is important for histone RNA processing. So far, it was unknown if this special U7 snRNP composition is conserved in invertebrates. Here we describe several putative invertebrate Lsm10 and Lsm11 orthologs that display low but clear sequence similarity to their vertebrate counterparts. Immunoprecipitation studies in Drosophila S2 cells indicate that the Drosophila Lsm10 and Lsm11 orthologs (dLsm10 and dLsm11) associate with each other and with Sm B, but not with Sm D1 and D2. Moreover, dLsm11 associates with the recently characterized Drosophila U7 snRNA and, indirectly, with histone H3 pre-mRNA. Furthermore, dLsm10 and dLsm11 can assemble into U7 snRNPs in mammalian cells. These experiments demonstrate a strong evolutionary conservation of the unique U7 snRNP composition, despite a high degree of primary sequence divergence of its constituents. Therefore, Drosophila appears to be a suitable system for further genetic studies of the cell biology of U7 snRNPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of alternative splicing for the diversity of the proteome and the large number of genetic diseases that are due to splicing defects call for methods to modulate alternative splicing decisions. Although splicing can be modulated by antisense oligonucleotides, this approach is confronted with problems of efficient delivery and the need for repeated administrations of large amounts of the oligonucleotides. Therefore we have developed methods allowing us to modulate splicing with the help of modified derivatives of the U7 small nuclear RNA involved in histone RNA 3' end processing. Its nuclear accumulation as a stable ribonucleoprotein particle makes U7 snRNA especially useful for this purpose. In particular, U7 derivatives containing two tandem antisense sequences directed against targets upstream and downstream of an exon can induce the efficient and specific skipping of that exon. U7 expression cassettes have been successfully introduced into a great number of cell lines, primary cells or tissues with the help of lentiviral and adeno-associated viral vectors. Examples of these therapeutic strategies in the fields of β-thalassemia, Duchenne muscular dytrophy and HIV/AIDS are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signaling via the MET receptor tyrosine kinase has been implicated in crosstalk with cellular responses to DNA damage. Our group previously demonstrated that MET inhibition in tumor cells with deregulated MET activity results in radiosensitization via downregulation of the ATR-CHK1-CDC25 pathway, a major signaling cascade responsible for intra-S and G2/M cell cycle arrest following DNA damage. Here we aimed at studying the potential therapeutic application of ionizing radiation in combination with a MET inhibitor, EMD-1214063, in p53-deficient cancer cells that harbor impaired G1/S checkpoint regulation upon DNA damage. We hypothesized that upon MET inhibition, p53-deficient cells would bypass both G1/S and G2/M checkpoints, promoting premature mitotic entry with substantial DNA lesions and cell death in a greater extent than p53-proficient cells. Our data suggest that p53-deficient cells are more susceptible to EMD-1214063 and combined treatment with irradiation than wildtype p53 lines as inferred from elevated γH2AX expression and increased cytotoxicity. Furthermore, cell cycle distribution profiling indicates constantly lower G1 and higher G2/M population as well as higher expression of a mitotic marker p-histone H3 following the dual treatment in p53 knockdown isogenic variant, compared to the parental counterpart. IMPLICATIONS The concept of MET inhibition-mediated radiosensitization enhanced by p53 deficiency is of high clinical relevance, since p53 is frequently mutated in numerous types of human cancer. The current data point for a therapeutic advantage for an approach combining MET targeting along with DNA damaging agents for MET positive/p53 negative tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The U7 snRNA, together with both common and unique snRNP proteins, forms the U7 snRNP particle. This particle is a major component of the 3' processing machinery that converts histone pre-mRNA into mature mRNA in the eukaryotic nucleus. The genes for many snRNAs are present in multiple copies and often have many pseudogenes. Southern blot experiments using U7 oligonucleotide and gene probes have identified only one strongly hybridizing band and three weakly hybridizing bands in mouse genomic DNA. Previously, two laboratories isolated genomic clones encoding one functional U7 gene and three presumed pseudogenes. Since all the genes were isolated on separate, nonoverlapping genomic fragments, the four genes are not tightly clustered in the mouse genome. In this study, we use fluorescence in situ hybridization to determine the chromosomal locations of these clones and their possible linkage to histone loci. Two of the pseudogenes map to mouse Chromosome 1, but are many megabases apart, whereas the active U7 gene maps to Chromosome 6. Possible mechanisms for this localization pattern are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Xenopus oocytes in vitro transcribed mouse U7 RNA is assembled into small nuclear ribonucleoproteins (snRNPs) that are functional in histone RNA 3' processing. If the special Sm binding site of U7 (AAUUUGUCUAG, U7 Sm WT) is converted into the canonical Sm sequence derived from the major snRNAs (AAUUUUUGGAG, U7 Sm OPT) the RNA assembles into a particle which accumulates more efficiently in the nucleus, but which is non-functional. U7 RNA with a heavily mutated Sm binding site (AACGCGUCAUG, U7 Sm MUT) is deficient in nuclear accumulation and function. By UV cross-linking U7 Sm WT RNA can be linked to three proteins, i.e. the common snRNP proteins G and B/B' and an apparently U7-specific protein of 40 kDa. As a result of altering the Sm binding site, U7 Sm OPT RNA cannot be cross-linked to the 40 kDa protein and no cross-links are obtained with U7 Sm MUT RNA. The fact that the Sm site also interacts with at least one U7-specific protein is so far unique to U7 RNA and may provide an explanation for the atypical sequence of this site. All described RNA-protein interactions, including that with the 40 kDa protein, already occur in the cytoplasm. An additional cytoplasmic photoadduct obtained with U7 Sm WT and U7 Sm OPT, but not U7 Sm MUT, RNAs is indicative of a protein of 60-80 kDa. The m7G cap structure of U7 Sm WT and U7 Sm OPT RNA becomes hypermethylated. However, the 3mG cap enhances, but is not required for, nuclear accumulation. Finally, U7 Sm WT RNA is functional in histone RNA processing even when bearing an ApppG cap.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTENTS. 1. Did life begin with catalytic RNA?–2. Self-splicing and self-cleaving RNAs–2.1 Self-splicing of group I introns – 2.2 Self-splicing of group II introns – 2.3 Self-cleaving RNAs–3. Splicing mediated by trans-acting factors–3.1 Group III introns – 3.2 Splicing of nuclear pre-mRNAs – 3.3 Trans-splicing – 3.4 Is nuclear pre-mRNA splicing evolutionarily related to group I and group II self-splicing?– 3.5 Non-RNA mediated splicing of tRNAs–4. Processing of ribosomal precursor RNAs–5. Processing of pre-mRNA 3′ ends–5.1 Polyadenylation – 5.2 Histone pre-mRNA 3′ processing–6. Other RNPs involved in metabolic mechanisms–6.1 5′ end processing of pre-tRNAs by RNase P – 6.2 The signal recognition particle – 6.3 Telomerase – 6.4 RNA editing in trypanosomatid mitochondria–7. Why RNA?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In transient expression studies after DNA transfection of HeLa cells, the mouse U7 gene produces only approximately 30% of the RNA produced by a mouse U1b gene. This difference persists even when the transfected genes have all their 5' and 3' flanking sequences exchanged suggesting a post-transcriptional effect. When the special U7 Sm binding site is mutated to a consensus derived from the major snRNAs (Sm-opt), the U7 RNA level increases 4- to 5-fold, whereas no RNA is detected from a U7 gene with a non-functional Sm binding site (Sm-mut). Moreover, U1b genes with the U7 Sm binding site yield reduced RNA levels. The Sm-opt site also alters the cellular behaviour of the corresponding U7 snRNA. It accumulates to a higher level in the nucleus than wild type U7 RNA, and is better immunoprecipitable with anti-Sm antibodies. Injection experiments in Xenopus oocytes indicate that the U7 genes with either Sm-opt or Sm-mut sites produce similar amounts of RNA as wild type U7, but that they differ in opposing ways in the processing of precursors to mature size U7 snRNA and in nuclear accumulation. However, in reconstitution experiments using Xenopus oocytes, we show that U7 Sm-opt RNA, despite its efficient nuclear accumulation, is not active in 3' processing of histone pre-mRNA, whereas wild type U7 RNA is assembled into functional snRNPs, which correctly process histone pre-mRNA substrate. This suggests a functional importance of the special U7 Sm sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To determine the effect of the use of iodinated contrast agents on the formation of DNA double-strand breaks during chest computed tomography (CT). MATERIALS AND METHODS This study was approved by the institutional review board, and written informed consent was obtained from all patients. This single-center study was performed at a university hospital. A total of 179 patients underwent contrast material-enhanced CT, and 66 patients underwent unenhanced CT. Blood samples were taken from these patients prior to and immediately after CT. In these blood samples, the average number of phosphorylated histone H2AX (γH2AX) foci per lymphocyte was determined with fluorescence microscopy. Significant differences between the number of foci that developed in both the presence and the absence of the contrast agent were tested by using an independent sample t test. RESULTS γH2AX foci levels were increased in both groups after CT. Patients who underwent contrast-enhanced CT had an increased amount of DNA radiation damage (mean increase ± standard error of the mean, 0.056 foci per cell ± 0.009). This increase was 107% ± 19 higher than that in patients who underwent unenhanced CT (mean increase, 0.027 foci per cell ± 0.014). CONCLUSION The application of iodinated contrast agents during diagnostic x-ray procedures, such as chest CT, leads to a clear increase in the level of radiation-induced DNA damage as assessed with γH2AX foci formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chromatin Accessibility Complex (CHRAC) consists of the ATPase ISWI, the large ACF1 subunit and a pair of small histone-like proteins, CHRAC-14/16. CHRAC is a prototypical nucleosome sliding factor that mobilizes nucleosomes to improve the regularity and integrity of the chromatin fiber. This may facilitate the formation of repressive chromatin. Expression of the signature subunit ACF1 is restricted during embryonic development, but remains high in primordial germ cells. Therefore, we explored roles for ACF1 during Drosophila oogenesis. ACF1 is expressed in somatic and germline cells, with notable enrichment in germline stem cells and oocytes. The asymmetrical localization of ACF1 to these cells depends on the transport of the Acf1 mRNA by the Bicaudal-D/Egalitarian complex. Loss of ACF1 function in the novel Acf1(7) allele leads to defective egg chambers and their elimination through apoptosis. In addition, we find a variety of unusual 16-cell cyst packaging phenotypes in the previously known Acf1(1) allele, with a striking prevalence of egg chambers with two functional oocytes at opposite poles. Surprisingly, we found that the Acf1(1) deletion - despite disruption of the Acf1 reading frame - expresses low levels of a PHD-bromodomain module from the C-terminus of ACF1 that becomes enriched in oocytes. Expression of this module from the Acf1 genomic locus leads to packaging defects in the absence of functional ACF1, suggesting competitive interactions with unknown target molecules. Remarkably, a two-fold overexpression of CHRAC (ACF1 and CHRAC-16) leads to increased apoptosis and packaging defects. Evidently, finely tuned CHRAC levels are required for proper oogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction of cell-autonomous apoptosis following oncogene-induced overproliferation is a major tumor-suppressive mechanism in vertebrates. However, the detailed mechanism mediating this process remains enigmatic. In this study, we demonstrate that dMyc-induced cell-autonomous apoptosis in the fruit fly Drosophila melanogaster relies on an intergenic sequence termed the IRER (irradiation-responsive enhancer region). The IRER mediates the expression of surrounding proapoptotic genes, and we use an in vivo reporter of the IRER chromatin state to gather evidence that epigenetic control of DNA accessibility within the IRER is an important determinant of the strength of this response to excess dMyc. In a previous work, we showed that the IRER also mediates P53-dependent induction of proapoptotic genes following DNA damage, and the chromatin conformation within IRER is regulated by polycomb group-mediated histone modifications. dMyc-induced apoptosis and the P53-mediated DNA damage response thus overlap in a requirement for the IRER. The epigenetic mechanisms controlling IRER accessibility appear to set thresholds for the P53- and dMyc-induced expression of apoptotic genes in vivo and may have a profound impact on cellular sensitivity to oncogene-induced stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The insulin-like growth factor 2 antisense (Igf2as) gene is part of the Ins-Igf2-H19 imprinted gene cluster. The function of the paternally expressed Igf2as is still elusive. In our previous work, we showed that Igf2as transcripts were located in the cytoplasm of C2C12 mouse myoblast cells, associated with polysomes and polyadenylated suggesting that Igf2as is protein coding. In the present work, the protein coding capacity of Igf2as was investigated. We demonstrate for the first time the existence of a polypeptide translated from an Igf2as construct. Furthermore, an RNA-Seq analysis was performed using RNA prepared from skeletal muscles of newborn wild-type and ∆ DMR1-U2 mice to further elucidate the function of Igf2as transcripts. We found no evidence for a regulatory role of Igf2as in the imprinted gene cluster. Interestingly, the RNA-Seq analysis indicated that Igf2as plays a role in the energy metabolism, the cell cycle, histone acetylation and muscle contraction pathways. Our Igf2as investigations further elucidated that there are two distinct Igf2as transcripts corresponding to two putative ORFs.