98 resultados para Health models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Early warning of future hypoglycemic and hyperglycemic events can improve the safety of type 1 diabetes mellitus (T1DM) patients. The aim of this study is to design and evaluate a hypoglycemia / hyperglycemia early warning system (EWS) for T1DM patients under sensor-augmented pump (SAP) therapy. Methods: The EWS is based on the combination of data-driven online adaptive prediction models and a warning algorithm. Three modeling approaches have been investigated: (i) autoregressive (ARX) models, (ii) auto-regressive with an output correction module (cARX) models, and (iii) recurrent neural network (RNN) models. The warning algorithm performs postprocessing of the models′ outputs and issues alerts if upcoming hypoglycemic/hyperglycemic events are detected. Fusion of the cARX and RNN models, due to their complementary prediction performances, resulted in the hybrid autoregressive with an output correction module/recurrent neural network (cARN)-based EWS. Results: The EWS was evaluated on 23 T1DM patients under SAP therapy. The ARX-based system achieved hypoglycemic (hyperglycemic) event prediction with median values of accuracy of 100.0% (100.0%), detection time of 10.0 (8.0) min, and daily false alarms of 0.7 (0.5). The respective values for the cARX-based system were 100.0% (100.0%), 17.5 (14.8) min, and 1.5 (1.3) and, for the RNN-based system, were 100.0% (92.0%), 8.4 (7.0) min, and 0.1 (0.2). The hybrid cARN-based EWS presented outperforming results with 100.0% (100.0%) prediction accuracy, detection 16.7 (14.7) min in advance, and 0.8 (0.8) daily false alarms. Conclusion: Combined use of cARX and RNN models for the development of an EWS outperformed the single use of each model, achieving accurate and prompt event prediction with few false alarms, thus providing increased safety and comfort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The finite element analysis is an accepted method to predict vertebral body compressive strength. This study compares measurements obtained from in vitro tests with the ones from two different simulation models: clinical quantitative computer tomography (QCT) based homogenized finite element (hFE) models and pre-clinical high-resolution peripheral QCT-based (HR-pQCT) hFE models. About 37 vertebral body sections were prepared by removing end-plates and posterior elements, scanned with QCT (390/450μm voxel size) as well as HR-pQCT (82μm voxel size), and tested in compression up to failure. Non-linear viscous damage hFE models were created from QCT/HT-pQCT images and compared to experimental results based on stiffness and ultimate load. As expected, the predictability of QCT/HR-pQCT-based hFE models for both apparent stiffness (r2=0.685/0.801r2=0.685/0.801) and strength (r2=0.774/0.924r2=0.774/0.924) increased if a better image resolution was used. An analysis of the damage distribution showed similar damage locations for all cases. In conclusion, HR-pQCT-based hFE models increased the predictability considerably and do not need any tuning of input parameters. In contrast, QCT-based hFE models usually need some tuning but are clinically the only possible choice at the moment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION The aim of this study was to determine the reproducibility and accuracy of linear measurements on 2 types of dental models derived from cone-beam computed tomography (CBCT) scans: CBCT images, and Anatomodels (InVivoDental, San Jose, Calif); these were compared with digital models generated from dental impressions (Digimodels; Orthoproof, Nieuwegein, The Netherlands). The Digimodels were used as the reference standard. METHODS The 3 types of digital models were made from 10 subjects. Four examiners repeated 37 linear tooth and arch measurements 10 times. Paired t tests and the intraclass correlation coefficient were performed to determine the reproducibility and accuracy of the measurements. RESULTS The CBCT images showed significantly smaller intraclass correlation coefficient values and larger duplicate measurement errors compared with the corresponding values for Digimodels and Anatomodels. The average difference between measurements on CBCT images and Digimodels ranged from -0.4 to 1.65 mm, with limits of agreement values up to 1.3 mm for crown-width measurements. The average difference between Anatomodels and Digimodels ranged from -0.42 to 0.84 mm with limits of agreement values up to 1.65 mm. CONCLUSIONS Statistically significant differences between measurements on Digimodels and Anatomodels, and between Digimodels and CBCT images, were found. Although the mean differences might be clinically acceptable, the random errors were relatively large compared with corresponding measurements reported in the literature for both Anatomodels and CBCT images, and might be clinically important. Therefore, with the CBCT settings used in this study, measurements made directly on CBCT images and Anatomodels are not as accurate as measurements on Digimodels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical appearance models have recently been introduced in bone mechanics to investigate bone geometry and mechanical properties in population studies. The establishment of accurate anatomical correspondences is a critical aspect for the construction of reliable models. Depending on the representation of a bone as an image or a mesh, correspondences are detected using image registration or mesh morphing. The objective of this study was to compare image-based and mesh-based statistical appearance models of the femur for finite element (FE) simulations. To this aim, (i) we compared correspondence detection methods on bone surface and in bone volume; (ii) we created an image-based and a mesh-based statistical appearance models from 130 images, which we validated using compactness, representation and generalization, and we analyzed the FE results on 50 recreated bones vs. original bones; (iii) we created 1000 new instances, and we compared the quality of the FE meshes. Results showed that the image-based approach was more accurate in volume correspondence detection and quality of FE meshes, whereas the mesh-based approach was more accurate for surface correspondence detection and model compactness. Based on our results, we recommend the use of image-based statistical appearance models for FE simulations of the femur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:Coronary heart disease is a major contributor to women's health problems.Design:Self-perceived social support, well-being and health-related quality of life (HRQL) were documented in the cross-sectional HeartQoL survey of European women one and six months after a myocardial infarction.Methods:European women were recruited in 18 European countries and grouped into four geographical regions (Southern Europe, Northern Europe, Western Europe and Eastern Europe). Continuous socio-demographic variables and categorical variables were compared by age and region with ANOVA and χ(2), respectively; multiple regression models were used to identify predictors of social support, well-being and HRQL.Results:Women living in the Eastern European region rated social support, well-being and HRQL significantly lower than women in the other regions. Older women had lower physical HRQL scores than younger women. Eastern European women rated social support, well-being and HRQL significantly lower than women in the other regions. Prediction of the dependent variables (social support, well-being and HRQL) by socio-demographic factors varied by total group, in the older age group, and by region; body mass index and managerial responsibility were the most consistent significant predictors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the relations between personality (Five-Factor Model), risky health behaviours, and perceptions of susceptibility to health risks among 683 university students. The hypothesis was that personality would affect perceptions of susceptibility to health risks in two ways: directly, irrespective of risky health behaviours, and indirectly, through the effects of personality on risky health behaviours. The students were surveyed about smoking, being drunk, drunk driving, risky sexual behaviour, and perceptions of susceptibility to related health risks. In path-analytical models we found the expected direct and indirect effects. The personality dimensions of Agreeableness and Conscientiousness had negative direct effects on perceptions of susceptibility as well as negative indirect effects through risky health behaviours. Neuroticism was the only personality dimension to show positive direct effects on perceptions of susceptibility as well as negative indirect effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiogenesis, the development of new blood vessels from preexisting ones, is driven by coordinated signaling pathways governed by specific molecules, hemodynamic forces, and endothelial and periendothelial cells. The processes involve adhesion, migration, and survival machinery within the target endothelial and periendothelial cells. Factors that interfere with any of these processes may therefore influence angiogenesis either positively (pro-angiogenesis) or negatively (antiangiogenesis). The avian area vasculosa (AV) and the avian chorioallantoic membrane (CAM) are two useful tools for studying both angiogenesis and antiangiogenesis since they are amenable to both intravascular and topical administration of target, agents, are relatively rapid assays, and can be adapted very easily to study angiogenesis-dependent processes, such as tumor growth. Both models provide a physiological setting that permits investigation of pro-angiogenic and antiangiogenic agent interactions in vivo.