76 resultados para HUMAN PLASMA KALLIKREIN
Resumo:
DMT1 (divalent metal-ion transporter 1) is a widely expressed metal-ion transporter that is vital for intestinal iron absorption and iron utilization by most cell types throughout the body, including erythroid precursors. Mutations in DMT1 cause severe microcytic anaemia in animal models. Four DMT1 isoforms that differ in their N- and C-termini arise from mRNA transcripts that vary both at their 5'-ends (starting in exon 1A or exon 1B) and at their 3'-ends giving rise to mRNAs containing (+) or lacking (-) the 3'-IRE (iron-responsive element) and resulting in altered C-terminal coding sequences. To determine whether these variations result in functional differences between isoforms, we explored the functional properties of each isoform using the voltage clamp and radiotracer assays in cRNA-injected Xenopus oocytes. 1A/IRE+-DMT1 mediated Fe2+-evoked currents that were saturable (K(0.5)(Fe) approximately 1-2 microM), temperature-dependent (Q10 approximately 2), H+-dependent (K(0.5)(H) approximately 1 muM) and voltage-dependent. 1A/IRE+-DMT1 exhibited the provisional substrate profile (ranked on currents) Cd2+, Co2+, Fe2+, Mn2+>Ni2+, V3+>>Pb2+. Zn2+ also evoked large currents; however, the zinc-evoked current was accounted for by H+ and Cl- conductances and was not associated with significant Zn2+ transport. 1B/IRE+-DMT1 exhibited the same substrate profile, Fe2+ affinity and dependence on the H+ electrochemical gradient. Each isoform mediated 55Fe2+ uptake and Fe2+-evoked currents at low extracellular pH. Whereas iron transport activity varied markedly between the four isoforms, the activity for each correlated with the density of anti-DMT1 immunostaining in the plasma membrane, and the turnover rate of the Fe2+ transport cycle did not differ between isoforms. Therefore all four isoforms of human DMT1 function as metal-ion transporters of equivalent efficiency. Our results reveal that the N- and C-terminal sequence variations among the DMT1 isoforms do not alter DMT1 functional properties. We therefore propose that these variations serve as tissue-specific signals or cues to direct DMT1 to the appropriate subcellular compartments (e.g. in erythroid cells) or the plasma membrane (e.g. in intestine).
Resumo:
NDRG1 is a hypoxia-inducible protein, whose modulated expression is associated with the progression of human cancers. Here, we reveal that NDRG1 is markedly upregulated in the cytoplasm and on the membrane in human hepatocellular carcinoma (HCC). We demonstrate further that hypoxic stress increases the cytoplasmic expression of NDRG1 in vitro, but does not result in its localization on the plasma membrane. However, grown within an HCC-xenograft in vivo, cells express NDRG1 in the cytoplasm and on the plasma membrane. In conclusion, hypoxia is a potent inducer of NDRG1 in HCCs, albeit requiring additional stimuli within the tumour microenvironment for its recruitment to the membrane.
Resumo:
An L-amino acid oxidase (LAAO), NA-LAAO, was purified from the venom of Naja atra. Its N-terminal sequence shows great similarity with LAAOs from other snake venoms. NA-LAAO dose-dependently induced aggregation of washed human platelets. However, it had no activity on platelets in platelet-rich plasma. A low concentration of NA-LAAO greatly promoted the effect of hydrogen peroxide, whereas hydrogen peroxide itself had little activation effect on platelets. NA-LAAO induced tyrosine phosphorylation of a number of platelet proteins including Src kinase, spleen tyrosine kinase, and phospholipase Cgamma2. Unlike convulxin, Fc receptor gamma chain and T lymphocyte adapter protein are not phosphorylated in NA-LAAO-activated platelets, suggesting an activation mechanism different from the glycoprotein VI pathway. Catalase inhibited the platelet aggregation and platelet protein phosphorylation induced by NA-LAAO. NA-LAAO bound to fixed platelets as well as to platelet lysates of Western blots. Furthermore, affinity chromatography of platelet proteins on an NA-LAAO-Sepharose 4B column isolated a few platelet membrane proteins, suggesting that binding of NA-LAAO to the platelet membrane might play a role in its action on platelets.
Resumo:
Directed release of human immunodeficiency virus type 1 (HIV-1) into the cleft of the virological synapse that can form between infected and uninfected T cells, for example, in lymph nodes, is thought to contribute to the systemic spread of this virus. In contrast, influenza virus, which causes local infections, is shed into the airways of the respiratory tract from free surfaces of epithelial cells. We now demonstrate that such differential release of HIV-1 and influenza virus is paralleled, at the subcellular level, by viral assembly at different microsegments of the plasma membrane of HeLa cells. HIV-1, but not influenza virus, buds through microdomains containing the tetraspanins CD9 and CD63. Consequently, the anti-CD9 antibody K41, which redistributes its antigen and also other tetraspanins to cell-cell adhesion sites, interferes with HIV-1 but not with influenza virus release. Altogether, these data strongly suggest that the bimodal egress of these two pathogenic viruses, like their entry into target cells, is guided by specific sets of host cell proteins.
Resumo:
Nitric oxide mediates a wide array of cellular functions in many tissues. It is generated by three known isoforms of nitric oxide synthases (NOS). Recently, the endothelial isoform, NOSIII, was shown to be abundantly expressed in the rat thyroid gland and its expression increased in goitrous glands. In this study, we analyzed whether NOSIII is expressed in human thyroid tissue and whether levels of expression vary in different states of thyroid gland function. Semiquantitative RT-PCR was used to assess variations in NOSIII gene expression in seven patients with Graves' disease, one with a TSH-receptor germline mutation and six hypothyroid patients (Hashimoto's thyroiditis). Protein expression and subcellular localization were determined by immunohistochemistry (two normal thyroids, five multinodular goiters, ten hyperthyroid patients and two hypothyroid patients). NOSIII mRNA was detected in all samples: the levels were significantly higher in tissues from hyperthyroid patients compared with euthyroid and hypothyroid patients. NOSIII immunoreactivity was detected in vascular endothelial cells, but was also found in thyroid follicular cells. In patients with Graves' disease, the immunostaining was diffusely enhanced in all follicular cells. A more intense signal was observed in toxic adenomas and in samples obtained from a patient with severe hyperthyroidism due to an activating mutation in the TSH receptor. In multinodular goiters, large follicles displayed a weak signal whereas small proliferative follicles showed intense immunoreactivity near the apical plasma membrane. In hypothyroid patients, NOSIII immunoreactivity was barely detectable. In summary, NOSIII is expressed both in endothelial cells and thyroid follicular cells. The endothelial localization of NOSIII is consistent with a role for nitric oxide in the vascular control of the thyroid. NOSIII expression in thyroid follicular cells and the variations in its immunoreactivity suggest a possible role for nitric oxide in thyrocyte function and/or growth.
Resumo:
The pharmacokinetic interaction between atovaquone, a 1,4-hydroxynaphthoquinone, and zidovudine was examined in an open, randomized, three-phase crossover study in 14 patients infected with human immunodeficiency virus. Atovaquone (750 mg every 12 hours) and zidovudine (200 mg every 8 hours) were given orally alone and in combination. Atovaquone significantly increased the area under the zidovudine concentration-time curve (AUC) (1.82 +/- 0.62 micrograms.hr/ml versus 2.39 +/- 0.68 micrograms.hr/ml; p < 0.05) and decreased the oral clearance of zidovudine (2029 +/- 666 ml/min versus 1512 +/- 464 ml/min; p < 0.05). In contrast, atovaquone tended to decrease the AUC of zidovudine-glucuronide (7.31 +/- 1.51 micrograms.hr/ml versus 6.89 +/- 1.42 micrograms.hr/ml; p < 0.1) and significantly decreased the ratio of AUC zidovudine-glucuronide/AUC zidovudine (4.48 +/- 1.94 versus 3.12 +/- 1.1; p < 0.05). The maximum concentration of zidovudine-glucuronide was significantly lowered by atovaquone (5.7 +/- 1.5 versus 4.57 +/- 0.97 micrograms/ml; p < 0.05). Zidovudine had no effect on the pharmacokinetic disposition of atovaquone. Atovaquone appears to increase the AUC of zidovudine by inhibiting the glucuronidation of zidovudine.
Resumo:
Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.
Resumo:
BACKGROUND: The role of human herpesvirus (HHV)-8 in the pathogenesis of multiple myeloma and its pre-malignant state of monoclonal gammopathy is unclear. HHV-8 is transmitted by organ transplantation, representing a unique model with which to investigate primary HHV-8 infection. METHODS: The authors studied the incidence of clonal gammopathy in renal transplant recipients and correlated it with previous and recent HHV-8 infection. RESULTS: Clonal gammopathy was observed in 31 of 162 (19%) HHV-8-seronegative patients, in 5 of 17 (29%) HHV-8-seropositive patients, and in 9 of 24 (38%) HHV-8 seroconverters within 5 years after transplantation. Gammopathy was often transient, and no progression to myeloma was observed. Two patients with persistent gammopathy developed B-cell lymphoma. In a logistic regression model, HHV-8 serostatus of the graft recipient was significantly associated with subsequent development of gammopathy, with a relative risk (RR) of 1.9 and a 95% confidence interval (CI) of 0.5 to 6.4 for an HHV-8-seropositive recipient and an RR of 2.9 and a 95% CI of 1.01 to 8.0 for seroconverters as compared with baseline (HHV-8 seronegative). Other significant variables were cytomegalovirus (CMV) serostatus and the intensity of immunosuppression (RR of 10.4 and 95% CI of 2.6-41.7 for a CMV-negative recipient with a CMV-positive donor vs. a CMV-negative recipient with a CMV-negative donor and RR of 17.6 and 95% CI of 2.0-150.8 if OKT3 was used vs. no use of antilymphocytic substances). CONCLUSIONS: Transplant recipients with HHV-8 infection are more likely to develop clonal gammopathy. However, this risk is much lower than the risk conferred by CMV infection and antilymphocytic therapy, arguing against a major role of HHV-8 infection in the pathogenesis of clonal plasma cell proliferation.
Resumo:
Background Airborne particles entering the respiratory tract may interact with the apical plasma membrane (APM) of epithelial cells and enter them. Differences in the entering mechanisms of fine (between 0.1 μm and 2.5 μm) and ultrafine ( ≤ 0.1 μm) particles may be associated with different effects on the APM. Therefore, we studied particle-induced changes in APM surface area in relation to applied and intracellular particle size, surface and number. Methods Human pulmonary epithelial cells (A549 cell line) were incubated with various concentrations of different sized fluorescent polystyrene spheres without surface charge (∅ fine – 1.062 μm, ultrafine – 0.041 μm) by submersed exposure for 24 h. APM surface area of A549 cells was estimated by design-based stereology and transmission electron microscopy. Intracellular particles were visualized and quantified by confocal laser scanning microscopy. Results Particle exposure induced an increase in APM surface area compared to negative control (p < 0.01) at the same surface area concentration of fine and ultrafine particles a finding not observed at low particle concentrations. Ultrafine particle entering was less pronounced than fine particle entering into epithelial cells, however, at the same particle surface area dose, the number of intracellular ultrafine particles was higher than that of fine particles. The number of intracellular particles showed a stronger increase for fine than for ultrafine particles at rising particle concentrations. Conclusion This study demonstrates a particle-induced enlargement of the APM surface area of a pulmonary epithelial cell line, depending on particle surface area dose. Particle uptake by epithelial cells does not seem to be responsible for this effect. We propose that direct interactions between particle surface area and cell membrane cause the enlargement of the APM.
Resumo:
KBPA-101 is a human monoclonal antibody of the immunoglobulin M isotype, which is directed against the O-polysaccharide moiety of Pseudomonas aeruginosa serotype O11. This double-blind, dose escalation study evaluated the safety and pharmacokinetics of KBPA-101 in 32 healthy volunteers aged 19 to 46 years. Each subject received a single intravenous infusion of KBPA-101 at a dose of 0.1, 0.4, 1.2, or 4 mg/kg of body weight or placebo infused over 2 h. Plasma samples for pharmacokinetic assessments were taken before infusion as well as 0.25, 0.5, 1, 2, 2.5, 4, 6, 8, 12, 24, 36, and 48 h and 4, 7, 10, and 14 days after start of dosing. Plasma concentrations of KBPA-101 were detected with mean maximum concentrations of drug in plasma of 1,877, 7,571, 24,923, and 83,197 ng/ml following doses of 0.1, 0.4, 1.2, and 4.0 mg/kg body weight, respectively. The mean elimination half-life was between 70 and 95 h. The mean volume of distribution was between 4.76 and 5.47 liters. Clearance ranged between 0.039 and 0.120 liters/h. At the highest dose of 4.0 mg/kg, plasma KBPA-101 levels were greater than 5,000 ng/ml for 14 days. KBPA-101 exhibited linear kinetics across all doses. No anti-KBPA-101 antibodies were detected after dosing in any subject. Overall, the human monoclonal antibody KBPA-101 was well tolerated over the entire dose range in healthy volunteers, and no serious adverse events have been reported.
Resumo:
Progressive multifocal leukoencephalopathy (PML) is a frequently fatal disease caused by uncontrolled polyomavirus JC (JCV) in severely immunodeficient patients. We investigated the JCV-specific cellular and humoral immunity in the Swiss HIV Cohort Study. We identified PML cases (n = 29), as well as three matched controls per case (n = 87), with prospectively cryopreserved peripheral blood mononuclear cells and plasma at diagnosis. Nested controls were matched according to age, gender, CD4(+) T-cell count, and decline. Survivors (n = 18) were defined as being alive for >1 year after diagnosis. Using gamma interferon enzyme-linked immunospot assays, we found that JCV-specific T-cell responses were lower in nonsurvivors than in their matched controls (P = 0.08), which was highly significant for laboratory- and histologically confirmed PML cases (P = 0.004). No difference was found between PML survivors and controls or for cytomegalovirus-specific T-cell responses. PML survivors showed significant increases in JCV-specific T cells (P = 0.04) and immunoglobulin G (IgG) responses (P = 0.005). IgG responses in survivors were positively correlated with CD4(+) T-cell counts (P = 0.049) and negatively with human immunodeficiency virus RNA loads (P = 0.03). We conclude that PML nonsurvivors had selectively impaired JCV-specific T-cell responses compared to CD4(+) T-cell-matched controls and failed to mount JCV-specific antibody responses. JCV-specific T-cell and IgG responses may serve as prognostic markers for patients at risk.
Resumo:
The synergism/antagonism between interleukin (IL)-1beta and parathyroid hormone (PTH) has been the subject of in vitro and in vivo work, but a possible direct action of the cytokine on PTH release has not been reported. We have investigated the effect of a continuous infusion of human recombinant IL-1beta (rIL-1beta) on circulating PTH during a 14-day period in 7-week-old female rats. This time interval was chosen in order to exclude initial hypercalcemia and to enable data collection under steady-state conditions. Five groups of 20 animals each had miniosmotic pumps (Alzet 2002, 200 microl) implanted subcutaneously and primed to release either distilled water (controls) or 100, 500, 1,000 and 2, 000 ng/24 h of rIL-1beta. Blood was drawn on days 1 and 14 for PTH, corticosterone and Ca2+ determinations. Adequate biological activity of the infused rIL-1beta was supported by elevated rectal temperature records and significant elevations of plasma corticosterone on day 14. The 100-ng dose had no effect but 500-2, 000 ng rIL-1beta/24 h significantly reduced plasma PTH in a dose-dependent manner down to 54% of basal value (20.4 +/- 1.1 vs. 15.3 +/- 1.4 pg/ml for 500 ng, p < 0.005; 20.5 +/- 1.3 vs 12.3 +/- 1.1 for 1,000 ng, p < 0.001, and 19.5 +/- 2.0 vs. 10.6 +/- 1.1 pg/ml for 2,000 ng, p < 0.0008). Despite these findings, no differences in blood Ca2+ could be detected between treated animals and controls. The following conclusions can be inferred from the foregoing: Systemic administration of rIL-1beta to rats induced a dose-dependent fall in circulating PTH without altering calcemia, calling into question the biological relevance of the former finding. Although the recorded PTH depression may indeed not have been severe enough to cause hypocalcemia, it can be hypothesized that osteoclast activation by rIL-1beta would enhance bone mineral release into the pool compensating for depressed PTH activity.
Resumo:
This brief review of the human Na/H exchanger gene family introduces a new classification with three subgroups to the SLC9 gene family. Progress in the structure and function of this gene family is reviewed with structure based on homology to the bacterial Na/H exchanger NhaA. Human diseases which result from genetic abnormalities of the SLC9 family are discussed although the exact role of these transporters in causing any disease is not established, other than poorly functioning NHE3 in congenital Na diarrhea.
Resumo:
Despite efforts implicating the cationic channel transient receptor potential melastatin member 4 (TRPM4) to cardiac, nervous, and immunological pathologies, little is known about its structure and function. In this study, we optimized the requirements for purification and extraction of functional human TRPM4 protein and investigated its supra-molecular assembly. We selected the Xenopus laevis oocyte expression system because it lacks endogenous TRPM4 expression, it is known to overexpress functional human membrane channels, can be used for structure-function analysis within the same system, and is easily scaled to improve yield and develop moderate throughput capabilities through the use of robotics. Negative-stain electron microscopy (EM) revealed various sized low-resolution particles. Single particle analysis identified the majority of the projections represented the monomeric form with additional oligomeric structures potentially characterized as tetramers. Two-electrode voltage clamp electrophysiology demonstrated that human TRPM4 is functionally expressed at the oocyte plasma membrane. This study opens the door for medium-throughput screening and structure-function determination of this important therapeutically relevant target.
Resumo:
TRPV5 and TRPV6 are two major calcium transport pathways in the human body maintaining calcium homeostasis. TRPV5 is mainly expressed in the distal convoluted and connecting tubule where it is the major, regulated pathway for calcium reabsorption. TRPV6 serves as an important calcium entry pathway in the duodenum and the placenta. Previously, we showed that human TRPV6 (hTRPV6) transports several heavy metals. In this study we tested whether human TRPV5 (hTRPV5) also transports cadmium and zinc, and whether hTRPV5 together with hTRPV6 are involved in cadmium and zinc toxicity. The hTRPV5 mRNA and protein were expressed in HEK293 cells transiently transfected with pTagRFP-C1-hTRPV5. The overexpression of the hTRPV5 protein at the plasma membrane was revealed by cell surface biotinylation and immunofluorescence techniques. We observed that both cadmium and zinc permeate hTRPV5 in ion imaging experiments using Fura-2 or Newport Green DCF. Our results were further confirmed using whole-cell patch clamp technique. Transient overexpression of hTRPV5 or hTRPV6 sensitized cells to cadmium and zinc. Toxicity curves of cadmium and zinc were also shifted in hTRPV6 expressing HEK293 cells clones. Our results suggest that TRPV5 and TRPV6 are crucial gates controlling cadmium and zinc levels in the human body especially under low calcium dietary conditions, when these channels are maximally upregulated.