134 resultados para Global change drivers


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article explores how global and local dynamics and stakes can be brought together when trying to combine conservation and regional development. For this purpose we analyse a series of studies carried out in the area of the Swiss Alps Jungfrau-Aletsch World Heritage Site (WHS). The approaches used in these studies to analyse the diversity and development of the region included data collection and evaluation of indicators such as population development, number of working places, occupation rates in various economic sectors and commuter balance, as well as interviews with key informants and assessment of existing planning tools. The major challenge of the newly declared World Heritage Region is that it is neither a political or administrative nor a cultural unit but constitutes a completely new type of space that breaks up and crosses traditional boundaries. The studies revealed an economic tertiarisation process and migration of the population from remote areas to regional centres. Tourism was identified as the key economic sector in the region. Regarding regional sustainability, the studies identified a need for quality dialogue and negotiation of interests and stakes. It was shown that in dealing with sustainability at the local level, many key issues cannot be resolved on the ground, as they depend on regional or national decisions, e.g. the conditions for tourism promotion in the region or economic validation of agricultural activity. We conclude from these findings that national or even international factors do not provide a basis for location-specific solutions, as they are often too general, and that the global label does not ensure sustainability in a designated WHS region; this depends entirely on local and regional dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Humankind today is challenged by numerous threats brought about by global change. Climate has been and is being modified by human activities, which calls for mitigation and adaptation measures at an unprecedented scale. Natural resources have been degraded by human development by means of land cover and land use changes, for which protective and restoration measures have to be taken by land users and governments in most countries of the North and South. Low levels of economic development and insufficient policies in most developing countries have led to widespread poverty, which affects nearly half of the world’s population and directly threatens almost one billion people. Finally, uncontrolled economic growth has increased disparities between and within populations and has led to widespread environmental problems in many nations. Generating and sharing knowledge is a key to addressing such global challenges. Knowledge can be used to develop the best solutions and to avoid or repair threats. Research partnerships have proven to be suitable means to bridge the divides and disparities between knowledge societies and developing countries, thereby reducing gaps. Research partnerships are tools for further capacity development and thereby lead to societal empowerment. Institutional settings allowing for research partnerships are needed both in the North and the South, so that the different networks can work together in a long-term enabling environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is increasing evidence that species can evolve rapidly in response to environmental change. However, although land use is one of the key drivers of current environmental change, studies of its evolutionary consequences are still fairly scarce, in particular studies that examine land-use effects across large numbers of populations, and discriminate between different aspects of land use. Here, we investigated genetic differentiation in relation to land use in the annual grass Bromus hordeaceus. A common garden study with offspring from 51 populations from three regions and a broad range of land-use types and intensities showed that there was indeed systematic population differentiation of ecologically important plant traits in relation to land use, in particular due to increasing mowing and grazing intensities. We also found strong land-use-related genetic differentiation in plant phenology, where the onset of flowering consistently shifted away from the typical time of management. In addition, increased grazing intensity significantly increased the genetic variability within populations. Our study suggests that land use can cause considerable genetic differentiation among plant populations, and that the timing of land use may select for phenological escape strategies, particularly in monocarpic plant species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The functioning and services of Central European forests are threatened by global change and a loss of biodiversity. Nutrient cycling as a key forest function is affected by biotic drivers (e.g., dominant tree species, understory plants, soil organisms) that interact with abiotic conditions (e.g., climate, soil properties). In contrast to grassland ecosystems, evidence for the relationship of nutrient cycles and biodiversity in forests is scarce because the structural complexity of forests limits experimental control of driving factors. Alternatively, observational studies along gradients in abiotic conditions and biotic properties may elucidate the role of biodiversity for forest nutrient cycles. This thesis aims to improve the understanding of the functional importance of biodiversity for nutrient cycles in forests by analyzing water-bound fluxes of nitrogen (N) and phosphorus (P) along gradients in biodiversity in three regions of Germany. The tested hypotheses included: (1) temperate forest canopies retain atmospheric N and retention increases with increasing plant diversity, (2) N release from organic layers increases with resource availability and population size of decomposers but N leaching decreases along a gradient in plant diversity, (3) P leaching from forest canopies increases with improved P supply from recalcitrant P fractions by a more diverse ectomycorrhizal fungal community. In the canopies of 27 forest stands from three regions, 16 % to 51 % of atmospheric N inputs were retained. Regional differences in N retention likely resulted from different in N availability in the soil. Canopy N retention was greater in coniferous than in beech forests, but this was not the case on loessderived soils. Nitrogen retention increased with increasing tree and shrub diversity which suggested complementary aboveground N uptake. The strength of the diversity effect on canopy N uptake differed among regions and between coniferous and deciduous forests. The N processing in the canopy directly coupled back to N leaching from organic layers in beech forests because throughfall-derived N flushed almost completely through the mull-type organic layers at the 12 studied beech sites. The N release from organic layers increased with stand basal area but was rather low (< 10 % of annual aboveground litterfall) because of a potentially high microbial N immobilization and intensive incorporation of litter into the mineral soil by bioturbation. Soil fauna biomass stimulated N mineralization through trophic interactions with primary producers and soil microorganisms. Both gross and net leaching from organic layers decreased with increasing plant diversity. Especially the diversity but not the cover of herbs increased N uptake. In contrast to N, P was leached from the canopy. Throughfall-derived P was also flushed quickly through the mull-type organic layers and leached P was predominantly immobilized in non directly plant-available P fractions in the mineral soil. Concentrations of plant-available phosphate in mineral soil solution were low and P leaching from the canopy increased with increasing concentrations of the moderately labile P fraction in soil and increasing ectomycorrhiza diversity while leaf C:P ratios decreased. This suggested that tree P supply benefited from complementary mining of diverse mycorrhizal communities for recalcitrant P. Canopy P leaching increased in years with pronounced spring drought which could lead to a deterioration of P supply by an increasing frequency of drought events. This thesis showed that N and P cycling in Central European forests is controlled by a complex interplay of abiotic site conditions with biological processes mediated by various groups of organisms, and that diverse plant communities contribute to tightening the N cycle in Central European forests and that diverse mycorrhizal communities improve the limited P availability. Maintaining forest biodiversity seems essential to ensure forest services in the light of environmental change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Institutions are one of the decisive factors which enable, constrain and shape adaptation to the impacts of climate change, variability and extreme events. However, current understanding of institutions in adaptation situations is fragmented across the scientific community, evidence diverges, and cumulative learning beyond single studies is limited. This study adopts a diagnostic approach to elaborate a nuanced understanding of institutional barriers and opportunities in climate adaptation by means of a model-centred meta-analysis of 52 case studies of public climate adaptation in Europe. The first result is a novel taxonomy of institutional attributes in adaptation situations. It conceptually organises and decomposes the many details of institutions that empirical research has shown to shape climate adaptation. In the second step, the paper identifies archetypical patterns of institutional traps and trade-offs which hamper adaptation. Thirdly, corresponding opportunities are identified that enable actors to alleviate, prevent or overcome specific institutional traps or trade-offs. These results cast doubt on the validity of general institutional design principles for successful adaptation. In contrast to generic principles, the identified opportunities provide leverage to match institutions to specific governance problems that are encountered in specific contexts. Taken together, the results may contribute to more coherence and integration of adaptation research that we need if we are to foster learning about the role of institutions in adaptation situations in a cumulative fashion.