62 resultados para FIBER ELECTRODES
Resumo:
In the course of this study, stiffness of a fibril array of mineralized collagen fibrils modeled with a mean field method was validated experimentally at site-matched two levels of tissue hierarchy using mineralized turkey leg tendons (MTLT). The applied modeling approaches allowed to model the properties of this unidirectional tissue from nanoscale (mineralized collagen fibrils) to macroscale (mineralized tendon). At the microlevel, the indentation moduli obtained with a mean field homogenization scheme were compared to the experimental ones obtained with microindentation. At the macrolevel, the macroscopic stiffness predicted with micro finite element (μFE) models was compared to the experimental stiffness measured with uniaxial tensile tests. Elastic properties of the elements in μFE models were injected from the mean field model or two-directional microindentations. Quantitatively, the indentation moduli can be properly predicted with the mean-field models. Local stiffness trends within specific tissue morphologies are very weak, suggesting additional factors responsible for the stiffness variations. At macrolevel, the μFE models underestimate the macroscopic stiffness, as compared to tensile tests, but the correlations are strong.
Resumo:
BACKGROUND Electrochemical conversion of xenobiotics has been shown to mimic human phase I metabolism for a few compounds. MATERIALS & METHODS Twenty-one compounds were analyzed with a semiautomated electrochemical setup and mass spectrometry detection. RESULTS The system was able to mimic some metabolic pathways, such as oxygen gain, dealkylation and deiodination, but many of the expected and known metabolites were not produced. CONCLUSION Electrochemical conversion is a useful approach for the preparative synthesis of some types of metabolites, but as a screening method for unknown phase I metabolites, the method is, in our opinion, inferior to incubation with human liver microsomes and in vivo experiments with laboratory animals, for example.
Resumo:
A novel species-specific anti-beaver-IgG-alkaline-phosphatase conjugate was synthesized for the development of a new serological test for echinococcosis in beavers. Two different ELISAs conventionally used for human Echinococcus multilocularis serology (Em18-ELISA and Em2-ELISA) yielded diagnostic sensitivities of 0% and 46%, respectively. In contrast, the subsequently developed immunoblotting assay gave an 85% diagnostic sensitivity (11 out of 13 beavers with alveolar echinococcosis were immunoblotting-positive, i.e. showed reactivity with a specific 21 Mr band), and maximal specificity. In conclusion, this immunoblotting assay should be the method of choice for use in serological studies on E. multilocularis in Eurasian beavers, and the test proved suitable to investigate both animals alive and post-mortem.
Resumo:
Selective expression of opsins in genetically defined neurons makes it possible to control a subset of neurons without affecting nearby cells and processes in the intact brain, but light must still be delivered to the target brain structure. Light scattering limits the delivery of light from the surface of the brain. For this reason, we have developed a fiber-optic-based optical neural interface (ONI), which allows optical access to any brain structure in freely moving mammals. The ONI system is constructed by modifying the small animal cannula system from PlasticsOne. The system for bilateral stimulation consists of a bilateral cannula guide that has been stereotactically implanted over the target brain region, a screw cap for securing the optical fiber to the animal's head, a fiber guard modified from the internal cannula adapter, and a bare fiber whose length is customized based on the depth of the target region. For unilateral stimulation, a single-fiber system can be constructed using unilateral cannula parts from PlasticsOne. We describe here the preparation of the bilateral ONI system and its use in optical stimulation of the mouse or rat brain. Delivery of opsin-expressing virus and implantation of the ONI may be conducted in the same surgical session; alternatively, with a transgenic animal no opsin virus is delivered during the surgery. Similar procedures are useful for deep or superficial injections (even for neocortical targets, although in some cases surface light-emitting diodes or cortex-apposed fibers can be used for the most superficial cortical targets).
Resumo:
Perchlorate adsorption on Au(1 1 1) was investigated by cyclic voltammetry and surface-enhanced infrared absorption spectroscopy. We found that the electrosorption valency of ClO4− on Au(1 1 1) is ∼ 0.6 and the total coverage of ClO4− on Au(1 1 1) is higher (∼ 0.15) than previously estimated (∼ 0.04). Based on the experimental adsorption isotherms obtained from infrared spectra and the reconstruction-free cyclic voltammograms, we proposed a mechanism for the ClO4− adsorption on Au(1 1 1).
Resumo:
Techniques of electrode modification by copper deposits are developed that allow obtaining compact bulk quasi-epitaxial deposits on basal Pt(hkl) single crystal faces. The issues of the deposit roughness and characterization are discussed. Problems of drying and transferring electrodes with copper deposits into other solutions are considered. The obtained deposits are used for CO2 electroreduction in propylene carbonate and acetonitrile solutions of 0.1 M TBAPF6, and the relationship between the electrode surface structure and its electrocatalytic activity in CO2 electroreduction is discussed. We also demonstrate that the restructuring of Cu deposits occurs upon CO2 electroreduction. Complementary reactivity studies are presented for bare Pt(hkl) and Cu(hkl) single crystal electrodes. Cu-modified Pt(hkl) electrodes display the highest activity as compared to bare Pt(hkl) and Cu(hkl). Particularly, the Cu/Pt(110) electrode shows the highest activity among the electrodes under study. Such high activity of Cu/Pt(hkl) electrodes can be explained not only by the increasing actual surface area but also by structural effects, namely by the presence of a large amount of specific defect sites (steps, kinks) on Cu crystallites.
Resumo:
PURPOSE Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. METHODS Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0 = 9.4T, and water temperatures were changed between 25°C and 65°C. RESULTS The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . CONCLUSION Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0 . Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Klebsiella pneumoniae of sequence type (ST) 11 is a hyper-epidemic nosocomial clone spreading worldwide among humans and also emerging in pets. In this report, we describe a clinical case of fatal sepsis due to this multidrug-resistant (MDR) pathogen in a Eurasian beaver. The isolate showed resistance to six different classes of antimicrobials including third generation cephalosporins and fluoroquinolones. This is the first report describing the detection of a MDR K. pneumoniae ST11 in a free-ranging animal. Our finding highlights the potential for environmental dissemination of hyper-epidemic clones of K. pneumoniae and possible spread in wildlife and cause epizootics.
Resumo:
Endometriosis is an extremely prevalent estrogen-dependent condition characterized by the growth of ectopic endometrial tissue outside the uterine cavity, and is often presented with severe pain. Although the relationship between lesion and pain remains unclear, nerve fibers found in close proximity to endometriotic lesions may be related to pain. Also, women with endometriosis pain develop central sensitization. Endometriosis creates an inflammatory environment and recent research is beginning to elucidate the role of inflammation in stimulating peripheral nerve sensitization. In this review, we discuss endometriosis-associated inflammation, peripheral nerve fibers, and assess their potential mechanism of interaction. We propose that an interaction between lesions and nerve fibers, mediated by inflammation, may be important in endometriosis-associated pain.
Resumo:
PURPOSE To gain a deeper understanding of the influence of skeletal muscle fiber orientation on metabolite visibility, magnetization transfer from water, and water proton relaxation rates in (1) H MR spectra. METHODS Non-water-suppressed MR spectroscopy was performed in tibialis anterior muscle (TA) of 10 healthy adults, with the TA oriented either parallel or at the magic angle to the 3T field. Spectra were acquired with metabolite-cycled PRESS, and water inversion from 50 to 2510 ms before excitation. Water proton T2 relaxation was sampled with STEAM with echo times from 12 to 272 ms. RESULTS Apparent concentrations of total creatine (tCr), taurine, and trimethylammonium compounds were reduced by 29% to 67% when TA was parallel to B0 . Both tCr peak areas were strongly correlated to the methylene peak splitting. Magnetization transfer rates from water to tCr CH3 were not significantly different between orientations. Water T1 s were similar between orientations, but T2 s were statistically significantly shorter by 1 ms in the parallel orientation (P = 0.002). CONCLUSION Muscle metabolite visibilities in MR spectroscopy and water T2 times depend substantially on muscle fiber orientation relative to B0 . In contrast, magnetization transfer rates appear to depend on muscle composition, rather than fiber orientation. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Echinococcus multilocularis is an important pathogenic zoonotic parasite of health concern, though absent in the United Kingdom. Eurasian beavers (Castor fiber) may act as a rare intermediate host, and so unscreened wild caught individuals may pose a potential risk of introducing this parasite to disease-free countries through translocation programs. There is currently no single definitive ante-mortem diagnostic test in intermediate hosts. An effective non-lethal diagnostic, feasible under field condition would be helpful to minimise parasite establishment risk, where indiscriminate culling is to be avoided. This study screened live beavers (captive, n = 18 or wild-trapped in Scotland, n = 12) and beaver cadavers (wild Scotland, n = 4 or Bavaria, n = 11), for the presence of E. multilocularis. Ultrasonography in combination with minimally invasive surgical examination of the abdomen by laparoscopy was viable under field conditions for real-time evaluation in beavers. Laparoscopy alone does not allow the operator to visualize the parenchyma of organs such as the liver, or inside the lumen of the gastrointestinal tract, hence the advantage of its combination with abdominal ultrasonography. All live beavers and Scottish cadavers were largely unremarkable in their haematology and serum biochemistry with no values suspicious for liver pathology or potentially indicative of E. multilocularis infection. This correlated well with ultrasound, laparoscopy, and immunoblotting, which were unremarkable in these individuals. Two wild Bavarian individuals were suspected E. multilocularis positive at post-mortem, through the presence of hepatic cysts. Sensitivity and specificity of a combination of laparoscopy and abdominal ultrasonography in the detection of parasitic liver cyst lesions was 100% in the subset of cadavers (95%Confidence Intervals 34.24-100%, and 86.7-100% respectively). For abdominal ultrasonography alone sensitivity was only 50% (95%CI 9.5-90.6%), with specificity being 100% (95%CI 79.2-100%). For laparoscopy alone sensitivity was 100% (95% CI 34.2-100%), with specificity also being 100% (95% CI 77.2-100%). Further immunoblotting, PCR and histopathological examination revealed one individual positive for E. multilocularis, whilst the other individual was positive for Taenia martis.
Resumo:
Missense mutations in ATP2A1 gene, encoding SERCA1 protein, cause a muscle disorder designed as congenital pseudomyotonia (PMT) in Chianina and Romagnola cattle or congenital muscular dystonia1 (CMD1) in Belgian Blue cattle. Although PMT is not life-threatening, CMD1 affected calves usually die within a few weeks of age as a result of respiratory complication. We have recently described a muscular disorder in a double muscle Dutch Improved Red and White cross-breed calf. Mutation analysis revealed an ATP2A1 mutation identical to that described in CMD1, even though clinical phenotype was quite similar to that of PMT. Here, we provide evidence for a deficiency of mutated SERCA1 in PMT affected muscles of Dutch Improved Red and White calf, but not of its mRNA. The reduced expression of SERCA1 is selective and not compensated by the SERCA2 isoform. By contrast, pathological muscles are characterized by a broad distribution of mitochondrial markers in all fiber types, not related to intrinsic features of double muscle phenotype and by an increased expression of sarcolemmal calcium extrusion pump. Calcium removal mechanisms, operating in muscle fibers as compensatory response aimed at lowering excessive cytoplasmic calcium concentration caused by SERCA1 deficiency, could explain the difference in severity of clinical signs.
Resumo:
Purpose: The purpose of this study was to evaluate the bone formation capability of polyetheretherketone (PEEK) and carbon fiber-reinforced PEEK (CFR-PEEK) implants coated with different titanium and hydroxyapatite plasma-sprayed layers after 2 and 12 weeks. Methods: In six sheep 108 implants were placed in the pelvis. Altogether six different surface modifications were tested. After 2 and 12 weeks, n = 3 implants per group were examined histologically and n = 6 implants per group were tested by a pull-out test. Results: Biomechanically (p = 0.001) as well as histologically (p > 0.05) surface coating of PEEK/CFR-PEEK led to an increase of osseointegration from 2 to 12 weeks. After 12 weeks, coated implants demonstrated significant (p < 0.001) higher pull-out values in comparison to uncoated implants. Overall, the double coating (titanium bond layer and hydroxyapatite top layer) showed the most favorable results after 2 and 12 weeks. Conclusions: Plasma-sprayed titanium and hydroxyapatite coatings on PEEK or CFR-PEEK demonstrated a significant improvement of osseointegration.