74 resultados para Cysteine Endopeptidases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that benzamidine-type compounds can inhibit the activity of arginine-specific cysteine proteinases (gingipains HRgpA and RgpB); well-known virulence factors of Porphyromonas gingivalis. They also hinder in vitro growth of this important periodontopathogenic bacterium. Apparently growth arrest is not associated with their ability to inhibit these proteases, because pentamidine, which is a 20-fold less efficient inhibitor of gingipain than 2,6-bis-(4-amidinobenzyl)-cyclohexanone (ACH), blocked P. gingivalis growth far more effectively. To identify targets for benzamidine-derived compounds other than Arg-gingipains, and to explain their bacteriostatic effects, P. gingivalis ATCC 33277 and P. gingivalis M5-1-2 (clinical isolate) cell extracts were subjected to affinity chromatography using a benzamidine-Sepharose column to identify proteins interacting with benzamidine. In addition to HRgpA and RgpB the analysis revealed heat-shock protein GroEL as another ligand for benzamidine. To better understand the effect of benzamidine-derived compounds on P. gingivalis, bacteria were exposed to benzamidine, pentamidine, ACH and heat, and the expression of gingipains and GroEL was determined. Exposure to heat and benzamidine-derived compounds caused significant increases in GroEL, at both the mRNA and protein levels. Interestingly, despite the fact that gingipains were shown to be the main virulence factors in a fertilized egg model of infection, mortality rates were strongly reduced, not only by ACH, but also by pentamidine, a relatively weak gingipain inhibitor. This effect may depend not only on gingipain inhibition but also on interaction of benzamidine derivatives with GroEL. Therefore these compounds may find use in supportive periodontitis treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To study clinical, morphological and molecular characteristics in a Swiss family with autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI). PARTICIPANTS AND METHODS A 15-month-old girl presenting with symptoms of polydipsia and polyuria was investigated by water deprivation test. Evaluation of the family revealed three further family members with symptomatic vasopressin-deficient diabetes insipidus. T1-weighted magnetic resonance images of the posterior pituitary were taken in two affected adult family members and molecular genetic analysis was performed in all affected individuals. RESULTS The water deprivation test in the 15-month-old child confirmed the diagnosis of vasopressin-deficient diabetes insipidus and the pedigree was consistent with autosomal dominant inheritance. The characteristic bright spot of the normal vasopressin-containing neurophypophysis was absent in both adults with adFNDI. Direct sequence analysis revealed a new deletion (177-179DeltaCGC) in exon 2 of the AVP-NP II gene in all affected individuals. At the amino acid level, this deletion eliminates cysteine 59 (C59Delta) and substitutes alanine 60 by tryptophan (A60W) in the AVP-NP II precursor; interestingly, the remainder of the reading frame remains unchanged. According to the three-dimensional structure of neurophysin, C59 is involved in a disulphide bond with C65. CONCLUSIONS Deletion of C59 and substitution of A60W in the AVP-NP II precursor is predicted to disrupt one of the seven disulphide bridges required for correct folding of the neurophysin moiety and thus disturb the function of neurophysin as the vasopressin transport protein. These data are in line with the clinical and morphological findings in the reported family with adFNDI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To ascertain whether reactive oxygen species (ROS) contribute to training-induced adaptation of skeletal muscle, we administered ROS-scavenging antioxidants (AOX; 140 mg/l of ascorbic acid, 12 mg/l of coenzyme Q10 and 1% N-acetyl-cysteine) via drinking water to 16 C57BL/6 mice. Sixteen other mice received unadulterated tap water (CON). One cohort of both groups (CON(EXE) and AOX(EXE) ) was subjected to treadmill exercise for 4 weeks (16-26 m/min, incline of 5°-10°). The other two cohorts (CON(SED) and AOX(SED) ) remained sedentary. In skeletal muscles of the AOX(EXE) mice, GSSG and the expression levels of SOD-1 and PRDX-6 were significantly lower than those in the CON(EXE) mice after training, suggesting disturbance of ROS levels. The peak power related to the body weight and citrate synthase activity was not significantly influenced in mice receiving AOX. Supplementation with AOX significantly altered the mRNA levels of the exercise-sensitive genes HK-II, GLUT-4 and SREBF-1c and the regulator gene PGC-1alpha but not G6PDH, glycogenin, FABP-3, MCAD and CD36 in skeletal muscle. Although the administration of AOX during endurance exercise alters the expression of particular genes of the ROS metabolism, it does not influence peak power or generally shift the metabolism, but it modulates the expression of specific genes of the carbohydrate and lipid metabolism and PGC-1alpha within murine skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) are a family of Zn2+-dependent endopeptidases targeting extracellular matrix (ECM) compounds as well as a number of other proteins. Their proteolytic activity acts as an effector mechanism of tissue remodeling in physiologic and pathologic conditions, and as modulator of inflammation. In the context of neuro-inflammatory diseases, MMPs have been implicated in processes such as (a) blood-brain barrier (BBB) and blood-nerve barrier opening, (b) invasion of neural tissue by blood-derived immune cells, (c) shedding of cytokines and cytokine receptors, and (d) direct cellular damage in diseases of the peripheral and central nervous system. This review focuses on the role of MMPs in multiple sclerosis (MS) and bacterial meningitis (BM), two neuro-inflammatory diseases where current therapeutic approaches are insufficient to prevent severe disability in the majority of patients. Inhibition of enzymatic activity may prevent MMP-mediated neuronal damage due to an overactive or deviated immune response in both diseases. Downregulation of MMP release may be the molecular basis for the beneficial effect of IFN-beta and steroids in MS. Instead, synthetic MMP inhibitors offer the possibility to shut off enzymatic activity of already activated MMPs. In animal models of MS and BM, they efficiently attenuated clinical disease symptoms and prevented brain damage due to excessive metalloproteinase activity. However, the required target profile for the therapeutic use of this novel group of compounds in human disease is not yet sufficiently defined and may be different depending on the type and stage of disease. Currently available MMP inhibitors show little target-specificity within the MMP family and may lead to side-effects due to interference with physiological functions of MMPs. Results from human MS and BM indicate that only a restricted number of MMPs specific for each disease is up-regulated. MMP inhibitors with selective target profiles offer the possibility of a more efficient therapy of MS and BM and may enter clinical trials in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced apoptosis. This might be achieved by preventing virus-induced activation of caspase-3, an IL-1beta-converting enzyme (ICE)-like cysteine protease that has been implicated in the death effector phase of apoptosis. Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts. In all three cell types, overexpressed 26 kDa Bcl-2 was cleaved into a 23 kDa protein. Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2. Preincubation of cells with the caspase inhibitor Z-VAD prevented Bcl-2 cleavage and partially restored the protective activity of Bcl-2 against virus-induced apoptosis. Moreover, a murine Bcl-2 mutant having Asp31, Asp34 and Asp36 substituted by Glu was resistant to proteolytic cleavage and abrogated apoptosis following virus infection. These findings indicate that alphaviruses can trigger a caspase-mediated inactivation of Bcl-2 in order to evade the death protection imposed by this survival factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin A (VA) deficiency and Tamm-Horsfall glycoprotein (THP), a protein that binds retinol and retinyl esters in canine urine, might be involved in the pathogenesis of urolithiasis in dogs. In the present study, we assessed levels of retinol, retinyl esters, retinol-binding protein (RBP) and THP in plasma and urine of dogs with a history of urolithiasis (n = 25) compared with clinically healthy controls (n = 18). Plasma retinol concentrations were higher in dogs with uroliths of struvit (P < 0.01), calcium oxalate (P < 0.05), urate (P < 0.01) and cysteine, but there were no differences in the concentrations of plasma RBP and retinyl esters. Excretion of urinary retinol and retinyl esters were tentatively, but not significantly higher in the stone-forming groups, which was accompanied by increased levels of urinary RBP (P < 0.01) and lower excretions in THP (P < 0.01). The results show that VA deficiency may be excluded as a potential cause for canine urolithiasis. However, the occurrence of RBP and a concomitant reduction of THP in urine indicates a disturbed kidney function as cause or consequence of stone formation in dogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pharmacological characterization of ligands depends upon the ability to accurately measure their binding properties. Fluorescence provides an alternative to more traditional approaches such as radioligand binding. Here we describe the binding and spectroscopic properties of eight fluorescent 5-HT3 receptor ligands. These were tested on purified receptors, expressed receptors on live cells, or in vivo. All compounds had nanomolar affinities with fluorescent properties extending from blue to near infra-red emission. A fluorescein-derivative had the highest affinity as measured by fluorescence polarization (FP; 1.14 nM), flow cytometry (FC; 3.23 nM) and radioligand binding (RB; 1.90 nM). Competition binding with unlabeled 5-HT3 receptor agonists (5-HT, mCPBG, quipazine) and antagonists (granisetron, palonosetron, tropisetron) yielded similar affinities in all three assays. When cysteine substitutions were introduced into the 5-HT3 receptor binding site the same changes in binding affinity were seen for both granisetron and the fluorescein-derivative, suggesting that they both adopt orientations that are consistent with co-crystal structures of granisetron with a homologous protein (5HTBP). As expected, in vivo live imaging in anaesthetized mice revealed staining in the abdominal cavity in intestines, but also in salivary glands. The unexpected presence of 5-HT3 receptors in mouse salivary glands was confirmed by Western blots. Overall, these results demonstrate the wide utility of our new high-affinity fluorescently-labeled 5-HT3 receptor probes, ranging from in vitro receptor pharmacology, including FC and FP ligand competition, to live imaging of 5-HT3 expressing tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GABAA receptors are the major inhibitory neurotransmitter receptors in the brain. Benzodiazepine exert their action via a high affinity-binding site at the α/γ subunit interface on some of these receptors. Diazepam has sedative, hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects. It acts by potentiating the current evoked by the agonist GABA. Understanding specific interaction of benzodiazepines in the binding pocket of different GABAA receptor isoforms might help to separate these divergent effects. As a first step, we characterized the interaction between diazepam and the major GABAA receptor isoform α1β2γ2. We mutated several amino acid residues on the γ2-subunit assumed to be located near or in the benzodiazepine binding pocket individually to cysteine and studied the interaction with three ligands that are modified with a cysteine-reactive isothiocyanate group (-NCS). When the reactive NCS group is in apposition to the cysteine residue this leads to a covalent reaction. In this way, three amino acid residues, γ2Tyr58, γ2Asn60, and γ2Val190 were located relative to classical benzodiazepines in their binding pocket on GABAA receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High throughput discovery of ligand scaffolds for target proteins can accelerate development of leads and drug candidates enormously. Here we describe an innovative workflow for the discovery of high affinity ligands for the benzodiazepine-binding site on the so far not crystallized mammalian GABAA receptors. The procedure includes chemical biology techniques that may be generally applied to other proteins. Prerequisites are a ligand that can be chemically modified with cysteine-reactive groups, knowledge of amino acid residues contributing to the drug-binding pocket, and crystal structures either of proteins homologous to the target protein or, better, of the target itself. Part of the protocol is virtual screening that without additional rounds of optimization in many cases results only in low affinity ligands, even when a target protein has been crystallized. Here we show how the integration of functional data into structure-based screening dramatically improves the performance of the virtual screening. Thus, lead compounds with 14 different scaffolds were identified on the basis of an updated structural model of the diazepam-bound state of the GABAA receptor. Some of these compounds show considerable preference for the α3β2γ2 GABAA receptor subtype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Albino phenotypes are documented in various species including the American mink. In other species the albino phenotypes are associated with tyrosinase (TYR) gene mutations; therefore TYR was considered the candidate gene for albinism in mink. Four microsatellite markers were chosen in the predicted region of the TYR gene. Genotypes at the markers Mvi6025 and Mvi6034 were found to be associated with the albino phenotype within an extended half-sib family. A BAC clone containing Mvi6034 was mapped to chromosome 7q1.1-q1.3 by fluorescent in situ hybridization. Subsequent analysis of genomic TYR sequences from wild-type and albino mink samples identified a nonsense mutation in exon 1, which converts a TGT codon encoding cysteine to a TGA stop codon (c.138T>A, p.C46X; EU627590). The mutation truncates more than 90% of the normal gene product including the putative catalytic domains. The results indicate that the nonsense mutation is responsible for the albino phenotype in the American mink.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunomodulation is a common feature of chronic helminth infections and mainly attributed to the secretion of bioactive molecules, which target and modify host immune cells. In this study, we show that the helminth immunomodulator AvCystatin, a cysteine protease inhibitor, induces a novel regulatory macrophage (Mreg; AvCystatin-Mreg), which is sufficient to mitigate major parameters of allergic airway inflammation and colitis in mice. A single adoptive transfer of AvCystatin-Mreg before allergen challenge suppressed allergen-specific IgE levels, the influx of eosinophils into the airways, local and systemic Th2 cytokine levels, and mucus production in lung bronchioles of mice, whereas increasing local and systemic IL-10 production by CD4(+) T cells. Moreover, a single administration of AvCystatin-Mreg during experimentally induced colitis strikingly reduced intestinal pathology. Phenotyping of AvCystatin-Mreg revealed increased expression of a distinct group of genes including LIGHT, sphingosine kinase 1, CCL1, arginase-1, and costimulatory molecules, CD16/32, ICAM-1, as well as PD-L1 and PD-L2. In cocultures with dendritic cells and CD4(+) T cells, AvCystatin-Mreg strongly induced the production of IL-10 in a cell-contact-independent manner. Collectively, our data identify a specific suppressive macrophage population induced by a single parasite immunomodulator, which protects against mucosal inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoclast research has an exciting history and a challenging future. More than 3 decades ago, it became evident that bone-resorbing osteoclasts are of hematopoietic origin and are ultimately linked to the "basic multicellular unit," where they team up with the other cell types, including bone-forming osteoblasts. Since 2 decades, we have learned about the signaling pathways controlling genes relevant for osteoclastogenesis and bone resorption. It took another decade until the hypothesized "osteoclast differentiation" factor was discovered and was translated into an approved pharmacologic strategy. Here, the focus is on another molecular target, cathepsin K, a cysteine protease being released by the osteoclast into the resorption compartment. Genetic deletion and pharmacological blocking of cathepsin K reduces bone resorption but with ongoing bone formation. This observation not only holds great promise to become a new pharmacologic strategy, but it also provides new insights into the coordinated work of cells in the "basic multicellular unit" and thus, bridges the history and future of osteoclast research. This article is a short primer on osteoclast biology for readers of the special issue on odanacatib, a cathepsin K inhibitor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cysteine synthesis from sulfide andO-acetyl-L-serine (OAS) is a reaction interconnecting sulfate, nitrogen, and carbon assimilation. UsingLemna minor, we analyzed the effects of omission of CO2 from the atmosphere and simultaneous application of alternative carbon sources on adenosine 5′-phosphosulfate reductase (APR) and nitrate reductase (NR), the key enzymes of sulfate and nitrate assimilation, respectively. Incubation in air without CO2 led to severe decrease in APR and NR activities and mRNA levels, but ribulose-1,5-bisphosphate carboxylase/oxygenase was not considerably affected. Simultaneous addition of sucrose (Suc) prevented the reduction in enzyme activities, but not in mRNA levels. OAS, a known regulator of sulfate assimilation, could also attenuate the effect of missing CO2 on APR, but did not affect NR. When the plants were subjected to normal air after a 24-h pretreatment in air without CO2, APR and NR activities and mRNA levels recovered within the next 24 h. The addition of Suc and glucose in air without CO2 also recovered both enzyme activities, with OAS again influenced only APR.35SO4 2− feeding showed that treatment in air without CO2 severely inhibited sulfate uptake and the flux through sulfate assimilation. After a resupply of normal air or the addition of Suc, incorporation of 35S into proteins and glutathione greatly increased. OAS treatment resulted in high labeling of cysteine; the incorporation of 35S in proteins and glutathione was much less increased compared with treatment with normal air or Suc. These results corroborate the tight interconnection of sulfate, nitrate, and carbon assimilation.