48 resultados para Computer Vision and Pattern Recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femoroacetabular impingement (FAI) is a dynamic conflict of the hip defined by a pathological, early abutment of the proximal femur onto the acetabulum or pelvis. In the past two decades, FAI has received increasing focus in both research and clinical practice as a cause of hip pain and prearthrotic deformity. Anatomical abnormalities such as an aspherical femoral head (cam-type FAI), a focal or general overgrowth of the acetabulum (pincer-type FAI), a high riding greater or lesser trochanter (extra-articular FAI), or abnormal torsion of the femur have been identified as underlying pathomorphologies. Open and arthroscopic treatment options are available to correct the deformity and to allow impingement-free range of motion. In routine practice, diagnosis and treatment planning of FAI is based on clinical examination and conventional imaging modalities such as standard radiography, magnetic resonance arthrography (MRA), and computed tomography (CT). Modern software tools allow three-dimensional analysis of the hip joint by extracting pelvic landmarks from two-dimensional antero-posterior pelvic radiographs. An object-oriented cross-platform program (Hip2Norm) has been developed and validated to standardize pelvic rotation and tilt on conventional AP pelvis radiographs. It has been shown that Hip2Norm is an accurate, consistent, reliable and reproducible tool for the correction of selected hip parameters on conventional radiographs. In contrast to conventional imaging modalities, which provide only static visualization, novel computer assisted tools have been developed to allow the dynamic analysis of FAI pathomechanics. In this context, a validated, CT-based software package (HipMotion) has been introduced. HipMotion is based on polygonal three-dimensional models of the patient’s pelvis and femur. The software includes simulation methods for range of motion, collision detection and accurate mapping of impingement areas. A preoperative treatment plan can be created by performing a virtual resection of any mapped impingement zones both on the femoral head-neck junction, as well as the acetabular rim using the same three-dimensional models. The following book chapter provides a summarized description of current computer-assisted tools for the diagnosis and treatment planning of FAI highlighting the possibility for both static and dynamic evaluation, reliability and reproducibility, and its applicability to routine clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diet management is a key factor for the prevention and treatment of diet-related chronic diseases. Computer vision systems aim to provide automated food intake assessment using meal images. We propose a method for the recognition of already segmented food items in meal images. The method uses a 6-layer deep convolutional neural network to classify food image patches. For each food item, overlapping patches are extracted and classified and the class with the majority of votes is assigned to it. Experiments on a manually annotated dataset with 573 food items justified the choice of the involved components and proved the effectiveness of the proposed system yielding an overall accuracy of 84.9%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated tissue characterization is one of the most crucial components of a computer aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research has been conducted in this field, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as medical image analysis. In this paper, we propose and evaluate a convolutional neural network (CNN), designed for the classification of ILD patterns. The proposed network consists of 5 convolutional layers with 2×2 kernels and LeakyReLU activations, followed by average pooling with size equal to the size of the final feature maps and three dense layers. The last dense layer has 7 outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micronodules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation. To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120 CT scans from different scanners and hospitals. To the best of our knowledge, this is the first deep CNN designed for the specific problem. A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset. The classification performance (~85.5%) demonstrated the potential of CNNs in analyzing lung patterns. Future work includes, extending the CNN to three-dimensional data provided by CT volume scans and integrating the proposed method into a CAD system that aims to provide differential diagnosis for ILDs as a supportive tool for radiologists.