61 resultados para Bilayer Segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extraction of surface models of a hip joint from CT data is a pre-requisite step for computer assisted diagnosis and planning (CADP) of periacetabular osteotomy (PAO). Most of existing CADP systems are based on manual segmentation, which is time-consuming and hard to achieve reproducible results. In this paper, we present a Fully Automatic CT Segmentation (FACTS) approach to simultaneously extract both pelvic and femoral models. Our approach works by combining fast random forest (RF) regression based landmark detection, multi-atlas based segmentation, with articulated statistical shape model (aSSM) based fitting. The two fundamental contributions of our approach are: (1) an improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the multi-atlas based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 6-fold cross validation. When the present approach was compared to manual segmentation, a mean segmentation accuracy of 0.40, 0.36, and 0.36 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. When the models derived from both segmentations were used to compute the PAO diagnosis parameters, a difference of 2.0 ± 1.5°, 2.1 ± 1.6°, and 3.5 ± 2.3% were found for anteversion, inclination, and acetabular coverage, respectively. The achieved accuracy is regarded as clinically accurate enough for our target applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Complete-pelvis segmentation in antero-posterior pelvic radiographs is required to create a patient-specific three-dimensional pelvis model for surgical planning and postoperative assessment in image-free navigation of total hip arthroplasty. Methods A fast and robust framework for accurately segmenting the complete pelvis is presented, consisting of two consecutive modules. In the first module, a three-stage method was developed to delineate the left hemipelvis based on statistical appearance and shape models. To handle complex pelvic structures, anatomy-specific information processing techniques were employed. As the input to the second module, the delineated left hemi-pelvis was then reflected about an estimated symmetry line of the radiograph to initialize the right hemi-pelvis segmentation. The right hemi-pelvis was segmented by the same three-stage method, Results Two experiments conducted on respectively 143 and 40 AP radiographs demonstrated a mean segmentation accuracy of 1.61±0.68 mm. A clinical study to investigate the postoperative assessment of acetabular cup orientations based on the proposed framework revealed an average accuracy of 1.2°±0.9° and 1.6°±1.4° for anteversion and inclination, respectively. Delineation of each radiograph costs less than one minute. Conclusions Despite further validation needed, the preliminary results implied the underlying clinical applicability of the proposed framework for image-free THA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mayer H. Segmentation and segregation patterns of women-owned high-tech firms in four metropolitan regions in the United States, Regional Studies. The number of women starting and owning a business has increased dramatically and female entrepreneurs are entering non-traditional sectors such as high technology, construction and manufacturing. This paper investigates the trends in high-tech entrepreneurship by women in four US metropolitan regions (Silicon Valley, California; Boston, Massachusetts; Washington, DC; and Portland, Oregon). The research examines the sectoral and spatial segmentation patterns of women-owned high-tech firms. Although women are entering non-traditional sectors, the research finds that women entrepreneurs tend to own businesses in female-typed high-tech sectors. In established high-tech regions like Silicon Valley and Boston, male-typed and female-typed women-owned high-tech firms differ significantly in terms of sectoral and spatial segmentation regardless of firm age. While differences between male-typed and female-typed firms are not significant at the regional level for Washington, DC, the analysis shows significant intra-metropolitan differences for the female-typed high-tech firms. The paper concludes that sectoral and spatial segmentation are powerful dynamics that shape business ownership by women in high technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. METHODS Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b(+)Prph2(Rd2) /J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. RESULTS Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. CONCLUSIONS Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. TRANSLATIONAL RELEVANCE The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The significance of specific lipids for proton pumping by the bacterial rhodopsin proteorhodopsin (pR) was studied. To this end, it was examined whether pR preferentially binds certain lipids and whether molecular properties of the lipid environment affect the photocycle. pR's photocycle was followed by microsecond flash-photolysis in the visible spectral range. It was fastest in phosphatidylcholine liposomes (soy bean lipid), intermediate in 3-[(3-cholamidopropyl) dimethylammonio] propanesulfonate (CHAPS): 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bicelles and in Triton X-100, and slowest when pR was solubilized in CHAPS. In bicelles with different lipid compositions, the nature of the head groups, the unsaturation level and the fatty acid chain length had small effects on the photocycle. The specific affinity of pR for lipids of the expression host Escherichia coli was investigated by an optimized method of lipid isolation from purified membrane protein using two different concentrations of the detergent N-dodecyl-β-d-maltoside (DDM). We found that 11 lipids were copurified per pR molecule at 0.1% DDM, whereas essentially all lipids were stripped off from pR by 1% DDM. The relative amounts of copurified phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin did not correlate with the molar percentages normally present in E. coli cells. The results indicate a predominance of phosphatidylethanolamine species in the lipid annulus around recombinant pR that are less polar than the dominant species in the cell membrane of the expression host E. coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic segmentation of the hip joint with pelvis and proximal femur surfaces from CT images is essential for orthopedic diagnosis and surgery. It remains challenging due to the narrowness of hip joint space, where the adjacent surfaces of acetabulum and femoral head are hardly distinguished from each other. This chapter presents a fully automatic method to segment pelvic and proximal femoral surfaces from hip CT images. A coarse-to-fine strategy was proposed to combine multi-atlas segmentation with graph-based surface detection. The multi-atlas segmentation step seeks to coarsely extract the entire hip joint region. It uses automatically detected anatomical landmarks to initialize and select the atlas and accelerate the segmentation. The graph based surface detection is to refine the coarsely segmented hip joint region. It aims at completely and efficiently separate the adjacent surfaces of the acetabulum and the femoral head while preserving the hip joint structure. The proposed strategy was evaluated on 30 hip CT images and provided an average accuracy of 0.55, 0.54, and 0.50 mm for segmenting the pelvis, the left and right proximal femurs, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposed an automated three-dimensional (3D) lumbar intervertebral disc (IVD) segmentation strategy from Magnetic Resonance Imaging (MRI) data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based template matching approach. Based on the estimated two-dimensional (2D) geometrical parameters, a 3D variable-radius soft tube model of the lumbar spine column is built by model fitting to the 3D data volume. Taking the geometrical information from the 3D lumbar spine column as constraints and segmentation initialization, the disc segmentation is achieved by a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diet-related chronic diseases severely affect personal and global health. However, managing or treating these diseases currently requires long training and high personal involvement to succeed. Computer vision systems could assist with the assessment of diet by detecting and recognizing different foods and their portions in images. We propose novel methods for detecting a dish in an image and segmenting its contents with and without user interaction. All methods were evaluated on a database of over 1600 manually annotated images. The dish detection scored an average of 99% accuracy with a .2s/image run time, while the automatic and semi-automatic dish segmentation methods reached average accuracies of 88% and 91% respectively, with an average run time of .5s/image, outperforming competing solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a solution to blind deconvolution of a scene with two layers (foreground/background). We show that the reconstruction of the support of these two layers from a single image of a conventional camera is not possible. As a solution we propose to use a light field camera. We demonstrate that a single light field image captured with a Lytro camera can be successfully deblurred. More specifically, we consider the case of space-varying motion blur, where the blur magnitude depends on the depth changes in the scene. Our method employs a layered model that handles occlusions and partial transparencies due to both motion blur and out of focus blur of the plenoptic camera. We reconstruct each layer support, the corresponding sharp textures, and motion blurs via an optimization scheme. The performance of our algorithm is demonstrated on synthetic as well as real light field images.