63 resultados para traffic flows
Resumo:
Tonoplast, the membrane delimiting plant vacuoles, regulates ion, water and nutrient movement between the cytosol and the vacuolar lumen through the activity of its membrane proteins. Correct traffic of proteins from the endoplasmic reticulum (ER) to the tonoplast requires (i) approval by the ER quality control, (ii) motifs for exit from the ER and (iii) motifs that promote sorting to the tonoplast. Recent evidence suggests that this traffic follows different pathways that are protein-specific and could also reflect vacuole specialization for lytic or storage function. The routes can be distinguished based on their sensitivity to drugs such as brefeldin A and C834 as well as using mutant plants that are defective in adaptor proteins of vesicle coats, or dominant-negative mutants of Rab GTPases.
Why do users care about their noise emissions? Explaining the intention to reduce road traffic noise
Resumo:
In this article, we develop the a priori and a posteriori error analysis of hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ ℝd, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm, which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp-adaptive refinement algorithm.
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25 m resolution.
Resumo:
The paper presents a link layer stack for wireless sensor networks, which consists of the Burst-aware Energy-efficient Adaptive Medium access control (BEAM) and the Hop-to-Hop Reliability (H2HR) protocol. BEAM can operate with short beacons to announce data transmissions or include data within the beacons. Duty cycles can be adapted by a traffic prediction mechanism indicating pending packets destined for a node and by estimating its wake-up times. H2HR takes advantage of information provided by BEAM such as neighbour information and transmission information to perform per-hop congestion control. We justify the design decisions by measurements in a real-world wireless sensor network testbed and compare the performance with other link layer protocols.
Resumo:
This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.
Resumo:
In this paper, we show statistical analyses of several types of traffic sources in a 3G network, namely voice, video and data sources. For each traffic source type, measurements were collected in order to, on the one hand, gain better understanding of the statistical characteristics of the sources and, on the other hand, enable forecasting traffic behaviour in the network. The latter can be used to estimate service times and quality of service parameters. The probability density function, mean, variance, mean square deviation, skewness and kurtosis of the interarrival times are estimated by Wolfram Mathematica and Crystal Ball statistical tools. Based on evaluation of packet interarrival times, we show how the gamma distribution can be used in network simulations and in evaluation of available capacity in opportunistic systems. As a result, from our analyses, shape and scale parameters of gamma distribution are generated. Data can be applied also in dynamic network configuration in order to avoid potential network congestions or overflows. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
This paper deals with scheduling batch (i.e., discontinuous), continuous, and semicontinuous production in process industries (e.g., chemical, pharmaceutical, or metal casting industries) where intermediate storage facilities and renewable resources (processing units and manpower) of limited capacity have to be observed. First, different storage configurations typical of process industries are discussed. Second, a basic scheduling problem covering the three above production modes is presented. Third, (exact and truncated) branch-and-bound methods for the basic scheduling problem and the special case of batch scheduling are proposed and subjected to an experimental performance analysis. The solution approach presented is flexible and in principle simple, and it can (approximately) solve relatively large problem instances with sufficient accuracy.