37 resultados para toxin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. MATERIALS AND METHODS: Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. RESULTS: Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. CONCLUSIONS: Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family of RTX (RTX representing repeats in the structural toxin) toxins is composed of several protein toxins with a characteristic nonapeptide glycine-rich repeat motif. Most of its members were shown to have cytolytic activity. By comparing the genetic relationships of the RTX toxin genes we established a set of 10 gene probes to be used for screening as-yet-unknown RTX toxin genes in bacterial species. The probes include parts of apxIA, apxIIA, and apxIIIA from Actinobacillus pleuropneumoniae, cyaA from Bordetella pertusis, frpA from Neisseria meningitidis, prtC from Erwinia chrysanthemi, hlyA and elyA from Escherichia coli, aaltA from Actinobacillus actinomycetemcomitans and lktA from Pasteurella haemolytica. A panel of pathogenic and nonpathogenic gram-negative bacteria were investigated for the presence of RTX toxin genes. The probes detected all known genes for RTX toxins. Moreover, we found potential RTX toxin genes in several pathogenic bacterial species for which no such toxins are known yet. This indicates that RTX or RTX-like toxins are widely distributed among pathogenic gram-negative bacteria. The probes generated by PCR and the hybridization method were optimized to allow broad-range screening for RTX toxin genes in one step. This included the binding of unlabelled probes to a nylon filter and subsequent hybridization of the filter with labelled genomic DNA of the strain to be tested. The method constitutes a powerful tool for the assessment of the potential pathogenicity of poorly characterized strains intended to be used in biotechnological applications. Moreover, it is useful for the detection of already-known or new RTX toxin genes in bacteria of medical importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta toxin (CPB) is known to be an essential virulence factor in the development of lesions of Clostridium perfringens type C enteritis in different animal species. Its target cells and exact mechanism of toxicity have not yet been clearly defined. Here, we evaluate the suitability of a neonatal piglet jejunal loop model to investigate early lesions of C. perfringens type C enteritis. Immunohistochemically, CPB was detected at microvascular endothelial cells in intestinal villi during early and advanced stages of lesions induced by C. perfringens type C. This was first associated with capillary dilatation and subsequently with widespread hemorrhage in affected intestinal segments. CPB was, however, not demonstrated on intestinal epithelial cells. This indicates a tropism of CPB toward endothelial cells and suggests that CPB-induced endothelial damage plays an important role in the early stages of C. perfringens type C enteritis in pigs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-toxin (CPB) is the essential virulence factor of C. perfringens type C causing necrotizing enteritis (NE) in different hosts. Using a pig infection model, we showed that CPB targets small intestinal endothelial cells. Its effect on the porcine intestinal epithelium, however, could not be adequately investigated by this approach. Using porcine neonatal jejunal explants and cryosections, we performed in situ binding studies with CPB. We confirmed binding of CPB to endothelial but could not detect binding to epithelial cells. In contrast, the intact epithelial layer inhibited CPB penetration into deeper intestinal layers. CPB failed to induce cytopathic effects in cultured polarized porcine intestinal epithelial cells (IPEC-J2) and primary jejunal epithelial cells. C. perfringens type C culture supernatants were toxic for cell cultures. This, however, was not inhibited by CPB neutralization. Our results show that, in the porcine small intestine, CPB primarily targets endothelial cells and does not bind to epithelial cells. An intact intestinal epithelial layer prevents CPB diffusion into underlying tissue and CPB alone does not cause direct damage to intestinal epithelial cells. Additional factors might be involved in the early epithelial damage which is needed for CPB diffusion towards its endothelial targets in the small intestine.