64 resultados para Time-Resolved EPR Photosynthetic Reaction Centers
Resumo:
Stopper molecules attached to nanozeolite L (NZL) boost the luminescence of confined Eu3+-β-diketonate complexes. The mechanism that is responsible was elucidated by comparing two diketonate ligands of different pKa and two aromatic imines, and by applying stationary and time resolved spectroscopy. The result is that the presence of the imidazolium based stopper is favorable to the sustainable formation of Eu3+-β-diketonate complexes with high coordination by decreasing the proton strength inside the channels of NZL. A consequence is that strongly luminescent transparent films can be prepared using aqueous suspension of the stopper modified composites.
Resumo:
Several approaches for the non-invasive MRI-based measurement of the aortic pressure waveform over the heart cycle have been proposed in the last years. These methods are normally based on time-resolved, two-dimensional phase-contrast sequences with uni-directionally encoded velocities (2D PC-MRI). In contrast, three-dimensional acquisitions with tridirectional velocity encoding (4D PC-MRI) have been shown to be a suitable data source for detailed investigations of blood flow and spatial blood pressure maps. In order to avoid additional MR acquisitions, it would be advantageous if the aortic pressure waveform could also be computed from this particular form of MRI. Therefore, we propose an approach for the computation of the aortic pressure waveform which can be completely performed using 4D PC-MRI. After the application of a segmentation algorithm, the approach automatically computes the aortic pressure waveform without any manual steps. We show that our method agrees well with catheter measurements in an experimental phantom setup and produces physiologically realistic results in three healthy volunteers.
Resumo:
We investigate numerically the excitation of nonlinear magnetic interactions in a ferrite material by an energetic pump pulse of terahertz (THz) radiation. The calculations are performed by solving the coupled Maxwell and Landau-Lifshitz-Gilbert differential equations. In a time-resolved THz pump/THz probe scheme, it is demonstrated that Faraday rotation of a delayed THz probe pulse can be used to map these interactions. Our study is motivated by the ability of soft x-ray free electron lasers to perform time-resolved imaging of the magnetization process at the submicrometer and subpicosecond length and time scales.
Resumo:
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.
Resumo:
AIM: To investigate collagen patches seeded with mesenchymal stem cells (MSCs) and/or tenocytes (TCs) with regards to their suitability for anterior cruciate ligament (ACL) repair. METHODS: Dynamic Intraligamentary Stabilization (DIS) utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide® (CG) and Novocart® (NC). Cells were seeded onto the scaffolds and cultured for 7 days either as a pure populations or as “premix” containing a 1 : 1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts (0.4µm). We analyzed the patches by real time polymerase chain reaction (RT-PCR), glycosaminoglycan (GAG), DNA and hydroxy-proline (HYP) content, was determined. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e. confocal laser scanning microscopy (cLSM) and scanning electron microscopy (SEM), were applied. RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and cLSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitative polymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 days. CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.
Resumo:
To understand the changes in the metabolome of hepatitis C virus (HCV)-infected persons, we conducted a metabolomic investigation in both plasma and urine of 30 HCV-positive individuals using plasmas from 30 HCV-negative blood donors and urines from 30 healthy volunteers. Samples were analysed by gas chromatography-mass spectrometry and data subjected to multivariate analysis. The plasma metabolomic phenotype of HCV-positive persons was found to have elevated glucose, mannose and oleamide, together with depressed plasma lactate. The urinary metabolomic phenotype of HCV-positive persons comprised reduced excretion of fructose and galactose combined with elevated urinary excretion of 6-deoxygalactose (fucose) and the polyols sorbitol, galactitol and xylitol. HCV-infected persons had elevated galactitol/galactose and sorbitol/glucose urinary ratios, which were highly correlated. These observations pointed to enhanced aldose reductase activity, and this was confirmed by real-time quantitative polymerase chain reaction with AKR1B10 gene expression elevated sixfold in the liver. In contrast, AKR1B1 gene expression was reduced 40% in HCV-positive livers. Interestingly, persons who were formerly HCV infected retained the metabolomic phenotype of HCV infection without reverting to the HCV-negative metabolomic phenotype. This suggests that the effects of HCV on hepatic metabolism may be long lived. Hepatic AKR1B10 has been reported to be elevated in hepatocellular carcinoma and in several premalignant liver diseases. It would appear that HCV infection alone increases AKR1B10 expression, which manifests itself as enhanced urinary excretion of polyols with reduced urinary excretion of their corresponding hexoses. What role the polyols play in hepatic pathophysiology of HCV infection and its sequelae is currently unknown.
Resumo:
The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B 0 = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B 0 value, RR-RCS measurements in a room temperature gas cell give the rotational constants B v of the five lowest-lying thermally populated vibrationally excited states ν7/8, ν9, ν11/12, ν13, and ν14/15. Their B v constants differ from B 0 by between −1.02 MHz and +2.23 MHz. Combining the B 0 with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys.111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths r e(C-C) = 1.3866(3) Å and r e(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ r e bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths r g(C-C)=1.3907(3) Å and r g(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction r g bond lengths measured in the 1960s.
Resumo:
PURPOSE To develop a method for computing and visualizing pressure differences derived from time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and to compare pressure difference maps of patients with unrepaired and repaired aortic coarctation to young healthy volunteers. METHODS 4D flow MRI data of four patients with aortic coarctation either before or after repair (mean age 17 years, age range 3-28, one female, three males) and four young healthy volunteers without history of cardiovascular disease (mean age 24 years, age range 20-27, one female, three males) was acquired using a 1.5-T clinical MR scanner. Image analysis was performed with in-house developed image processing software. Relative pressures were computed based on the Navier-Stokes equation. RESULTS A standardized method for intuitive visualization of pressure difference maps was developed and successfully applied to all included patients and volunteers. Young healthy volunteers exhibited smooth and regular distribution of relative pressures in the thoracic aorta at mid systole with very similar distribution in all analyzed volunteers. Patients demonstrated disturbed pressures compared to volunteers. Changes included a pressure drop at the aortic isthmus in all patients, increased relative pressures in the aortic arch in patients with residual narrowing after repair, and increased relative pressures in the descending aorta in a patient after patch aortoplasty. CONCLUSIONS Pressure difference maps derived from 4D flow MRI can depict alterations of spatial pressure distribution in patients with repaired and unrepaired aortic coarctation. The technique might allow identifying pathophysiological conditions underlying complications after aortic coarctation repair.
Resumo:
BACKGROUND Retrograde diastolic blood flow in the proximal descending aorta (DAo) connecting complex plaques (≥4 mm thick) with brain-supplying supra-aortic arteries may constitute a source of stroke. Yet, data only from high-risk populations (cryptogenic stroke patients with aortic atheroma≥3 mm) regarding the prevalence of this potential stroke mechanism are available. We aimed to quantify the frequency of this mechanism in unselected patients with cryptogenic stroke after routine diagnostics and controls without a history of stroke. METHODS 88 patients (67 stroke patients, 21 cardiac controls) were prospectively included. 3D T1-weighted bright blood MRI of the aorta was applied for the detection of complex DAo atheroma. ECG-triggered and navigator-gated 4D flow MRI allowed measuring time-resolved 3D blood flow in vivo. Potential retrograde embolization pathways were defined as the co-occurrence of complex plaques and retrograde blood flow in the DAo reaching the outlet of (a) the left subclavian artery, (b) the left common carotid artery, or/and (c) the brachiocephalic trunk. The frequency of these pathways was analyzed by importing 2D plaque images into 3D blood flow visualization software. RESULTS Complex DAo plaques were more frequent in stroke patients (44 in 31/67 patients (46.3%) vs. 5 in 4/21 controls (19.1%); p=0.039), especially in older patients (29/46 (63.04%) patients≥60 years of age with 41 plaques vs. 2/21 (9.14%) patients<60 years of age with 3 plaques; p<0.001). Contrary to our assumption, retrograde diastolic blood flow at the DAo occurred in every patient irrespective of the existence of plaques with a similar extent in both groups (26±14 vs. 32±18 mm; p=0.114). Therefore, only the higher prevalence of complex DAo plaques in stroke patients resulted in a three times higher frequency of potential retrograde embolization pathways compared to controls (22/67 (32.8%) vs. 2/21 (9.5%) controls; p=0.048). CONCLUSIONS This study revealed that retrograde flow in the descending aorta is a common phenomenon not only in stroke patients. The existence of potential retrograde embolization pathways depends mainly on the occurrence of complex plaques in the area 0 to ∼30 mm behind the outlet of the left subclavian artery, which is exposed to flow reversal. In conclusion, we have shown that the frequency of potential retrograde embolization pathways was significantly higher in stroke patients suggesting that this mechanism may play a role in retrograde brain embolism.
Resumo:
OBJECTIVE We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. MATERIALS AND METHODS k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). RESULTS Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). CONCLUSION k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.
Resumo:
PURPOSE The aim of this work is to derive a theoretical framework for quantitative noise and temporal fidelity analysis of time-resolved k-space-based parallel imaging methods. THEORY An analytical formalism of noise distribution is derived extending the existing g-factor formulation for nontime-resolved generalized autocalibrating partially parallel acquisition (GRAPPA) to time-resolved k-space-based methods. The noise analysis considers temporal noise correlations and is further accompanied by a temporal filtering analysis. METHODS All methods are derived and presented for k-t-GRAPPA and PEAK-GRAPPA. A sliding window reconstruction and nontime-resolved GRAPPA are taken as a reference. Statistical validation is based on series of pseudoreplica images. The analysis is demonstrated on a short-axis cardiac CINE dataset. RESULTS The superior signal-to-noise performance of time-resolved over nontime-resolved parallel imaging methods at the expense of temporal frequency filtering is analytically confirmed. Further, different temporal frequency filter characteristics of k-t-GRAPPA, PEAK-GRAPPA, and sliding window are revealed. CONCLUSION The proposed analysis of noise behavior and temporal fidelity establishes a theoretical basis for a quantitative evaluation of time-resolved reconstruction methods. Therefore, the presented theory allows for comparison between time-resolved parallel imaging methods and also nontime-resolved methods. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Recent functional magnetic resonance imaging (fMRI) studies consistently revealed contributions of fronto-parietal and related networks to the execution of a visuospatial judgment task, the so-called "Clock Task". However, due to the low temporal resolution of fMRI, the exact cortical dynamics and timing of processing during task performance could not be resolved until now. In order to clarify the detailed cortical activity and temporal dynamics, 14 healthy subjects performed an established version of the "Clock Task", which comprises a visuospatial task (angle discrimination) and a control task (color discrimination) with the same stimulus material, in an electroencephalography (EEG) experiment. Based on the time-resolved analysis of network activations (microstate analysis), differences in timing between the angle compared to the color discrimination task were found after sensory processing in a time window starting around 200ms. Significant differences between the two tasks were observed in an analysis window from 192ms to 776ms. We divided this window in two parts: an early phase - from 192ms to ∼440ms, and a late phase - from ∼440ms to 776ms. For both tasks, the order of network activations and the types of networks were the same, but, in each phase, activations for the two conditions were dominated by differing network states with divergent temporal dynamics. Our results provide an important basis for the assessment of deviations in processing dynamics during visuospatial tasks in clinical populations.
Resumo:
Understanding nuclear and electronic dynamics of molecular systems has advanced considerably by probing their nonlinear responses with a suitable sequence of pulses. Moreover, the ability to control crucial parameters of the excitation pulses, such as duration, sequence, frequency, polarization, slowly varying envelope, or carrier phase, has led to a variety of advanced time-resolved spectroscopic methodologies. Recently, two-dimensional electronic spectroscopy with ultrashort pulses has become a more and more popular tool since it allows to obtain information on energy and coherence transfer phenomena, line broadening mechanisms, or the presence of quantum coherences in molecular complexes. Here, we present a high fidelity two-dimensional electronic spectroscopy setup designed for molecular systems in solution. It incorporates the versatility of pulse-shaping methods to achieve full control on the amplitude and phase of the individual exciting and probing pulses. Selective and precise amplitude- and phase-modulation is shown and applied to investigate electronic dynamics in several reference molecular systems.
Resumo:
In any physicochemical process in liquids, the dynamical response of the solvent to the solutes out of equilibrium plays a crucial role in the rates and products: the solvent molecules react to the changes in volume and electron density of the solutes to minimize the free energy of the solution, thus modulating the activation barriers and stabilizing (or destabilizing) intermediate states. In charge transfer (CT) processes in polar solvents, the response of the solvent always assists the formation of charge separation states by stabilizing the energy of the localized charges. A deep understanding of the solvation mechanisms and time scales is therefore essential for a correct description of any photochemical process in dense phase and for designing molecular devices based on photosensitizers with CT excited states. In the last two decades, with the advent of ultrafast time-resolved spectroscopies, microscopic models describing the relevant case of polar solvation (where both the solvent and the solute molecules have a permanent electric dipole and the mutual interaction is mainly dipole−dipole) have dramatically progressed. Regardless of the details of each model, they all assume that the effect of the electrostatic fields of the solvent molecules on the internal electronic dynamics of the solute are perturbative and that the solvent−solute coupling is mainly an electrostatic interaction between the constant permanent dipoles of the solute and the solvent molecules. This well-established picture has proven to quantitatively rationalize spectroscopic effects of environmental and electric dynamics (time-resolved Stokes shifts, inhomogeneous broadening, etc.). However, recent computational and experimental studies, including ours, have shown that further improvement is required. Indeed, in the last years we investigated several molecular complexes exhibiting photoexcited CT states, and we found that the current description of the formation and stabilization of CT states in an important group of molecules such as transition metal complexes is inaccurate. In particular, we proved that the solvent molecules are not just spectators of intramolecular electron density redistribution but significantly modulate it. Our results solicit further development of quantum mechanics computational methods to treat the solute and (at least) the closest solvent molecules including the nonperturbative treatment of the effects of local electrostatics and direct solvent−solute interactions to describe the dynamical changes of the solute excited states during the solvent response.
Resumo:
Femtosecond time-resolved Raman rotational coherence spectroscopy (RCS) is employed to determine accurate rotational, vibration–rotation coupling constants, and centrifugal distortion constants of cyclopentane (C⁵H¹⁰). Its lowest-frequency vibration is a pseudorotating ring deformation that interconverts 10 permutationally distinct but energetically degenerate “twist” minima interspersed by 10 “bent” conformers. While the individual twist and bent structures are polar asymmetric tops, the pseudorotation is fast on the time scale of external rotation, rendering cyclopentane a fluxionally nonpolar symmetric top molecule. The pseudorotational level pattern corresponds to a one-dimensional internal rotor with a pseudorotation constant Bps ≈ 2.8 cm⁻¹. The pseudorotational levels are significantly populated up to l = ± 13 at 298 K; <10% of the molecules are in the l = 0 level. The next-higher vibration is the “radial” ν²³ ring deformation mode at 273 cm⁻¹, which is far above the pseudorotational fundamental. Femtosecond Raman RCS measurements were performed in a gas cell at T = 293 K and in a pulsed supersonic jet at T ≈ 90 K. The jet cooling reduces the pseudorotational distribution to l < ±8 and eliminates the population of ν²³, allowing one to determine the rotational constant as A0 = B0 = 6484.930(11) MHz. This value is ∼300 times more precise than the previous value. The fit of the RCS transients reveals that the rotation–pseudorotation coupling constant αe,psB = −0.00070(1) MHz is diminutive, implying that excitation of the pseudorotation has virtually no effect on the B0 rotational constant of cyclopentane. The smallness of αe,psB can be realized when comparing to the vibration–rotation coupling constant of the ν²³ vibration, αe,23B = −9.547(1) MHz, which is about 10⁴ times larger.