58 resultados para Testicular regression
Resumo:
coefplot plots results from estimation commands or Stata matrices. Results from multiple models or matrices can be combined in a single graph. The default behavior of coefplot is to draw markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce various other types of graphs.
Resumo:
OBJECTIVE To investigate the effect of gonadotropin-releasing hormone analogues (GnRHa) on the peritoneal fluid microenvironment in women with endometriosis. STUDY DESIGN Peritoneal fluid was collected from 85 women with severe endometriosis (rAFS stage III and IV) during laparoscopic surgery during the proliferative phase. Prior to surgery clinical data were collected. The concentrations of specific markers for endometriosis in the peritoneal fluid were determined using an ELISA and a comparison between peritoneal fluid markers in women using GnRHa and no hormonal treatment was performed using a non-parametric Mann-Whitney U test. RESULTS The study included peritoneal fluid from 39 patients who had been administered GnRHa (Zoladex(®)) in the three months prior to surgery and 46 from women with no hormonal treatment in this period. Concentrations of IL-8, PAPP-A, glycodelin-A and midkine were significantly reduced in the GnRHa treatment group compared to women receiving no hormonal treatment. RANTES, MCP-1, ENA-78, TNF-α, OPG, IP-10 and defensin showed no significant change between the two groups. CONCLUSIONS GnRHa mediate a significant regression in the inflammatory nature of the peritoneal microenvironment in women with endometriosis.
Resumo:
We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples—51 samples per series—yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( R2cv = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.
Resumo:
Histopathologic determination of tumor regression provides important prognostic information for locally advanced gastroesophageal carcinomas after neoadjuvant treatment. Regression grading systems mostly refer to the amount of therapy-induced fibrosis in relation to residual tumor or the estimated percentage of residual tumor in relation to the former tumor site. Although these methods are generally accepted, currently there is no common standard for reporting tumor regression in gastroesophageal cancers. We compared the application of these 2 major principles for assessment of tumor regression: hematoxylin and eosin-stained slides from 89 resection specimens of esophageal adenocarcinomas following neoadjuvant chemotherapy were independently reviewed by 3 pathologists from different institutions. Tumor regression was determined by the 5-tiered Mandard system (fibrosis/tumor relation) and the 4-tiered Becker system (residual tumor in %). Interobserver agreement for the Becker system showed better weighted κ values compared with the Mandard system (0.78 vs. 0.62). Evaluation of the whole embedded tumor site showed improved results (Becker: 0.83; Mandard: 0.73) as compared with only 1 representative slide (Becker: 0.68; Mandard: 0.71). Modification into simplified 3-tiered systems showed comparable interobserver agreement but better prognostic stratification for both systems (log rank Becker: P=0.015; Mandard P=0.03), with independent prognostic impact for overall survival (modified Becker: P=0.011, hazard ratio=3.07; modified Mandard: P=0.023, hazard ratio=2.72). In conclusion, both systems provide substantial to excellent interobserver agreement for estimation of tumor regression after neoadjuvant chemotherapy in esophageal adenocarcinomas. A simple 3-tiered system with the estimation of residual tumor in % (complete regression/1% to 50% residual tumor/>50% residual tumor) maintains the highest reproducibility and prognostic value.
Resumo:
BACKGROUND Recently, histopathological tumour regression, prevalence of signet ring cells, and localisation were reported as prognostic factors in neoadjuvantly treated oesophagogastric (junctional and gastric) cancer. This exploratory retrospective study analyses independent prognostic factors within a large patient cohort after preoperative chemotherapy including clinical and histopathological factors. METHODS In all, 850 patients presenting with oesophagogastric cancer staged cT3/4 Nany cM0/x were treated with neoadjuvant chemotherapy followed by resection in two academic centres. Patient data were documented in a prospective database and retrospectively analysed. RESULTS Of all factors prognostic on univariate analysis, only clinical response, complications, ypTNM stage, and R category were independently prognostic (P<0.01) on multivariate analysis. Tumour localisation and signet ring cells were independently prognostic only when investigator-dependent clinical response evaluation was excluded from the multivariate model. Histopathological tumour regression correlates with tumour grading, Laurén classification, clinical response, ypT, ypN, and R categories but was not identified as an independent prognostic factor. Within R0-resected patients only surgical complications and ypTNM stage were independent prognostic factors. CONCLUSIONS Only established prognostic factors like ypTNM stage, R category, and complications were identified as independent prognostic factors in resected patients after neoadjuvant chemotherapy. In contrast, histopathological tumour regression was not found as an independent prognostic marker.
Resumo:
Graphical display of regression results has become increasingly popular in presentations and in scientific literature because graphs are often much easier to read than tables. Such plots can be produced in Stata by the marginsplot command (see [R] marginsplot). However, while marginsplot is versatile and flexible, it has two major limitations: it can only process results left behind by margins (see [R] margins), and it can handle only one set of results at a time. In this article, I introduce a new command called coefplot that overcomes these limitations. It plots results from any estimation command and combines results from several models into one graph. The default behavior of coefplot is to plot markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce other types of graphs. I illustrate the capabilities of coefplot by using a series of examples.
Resumo:
The counterfactual decomposition technique popularized by Blinder (1973, Journal of Human Resources, 436–455) and Oaxaca (1973, International Economic Review, 693–709) is widely used to study mean outcome differences between groups. For example, the technique is often used to analyze wage gaps by sex or race. This article summarizes the technique and addresses several complications, such as the identification of effects of categorical predictors in the detailed decomposition or the estimation of standard errors. A new command called oaxaca is introduced, and examples illustrating its usage are given.
Resumo:
estout, introduced by Jann (Stata Journal 5: 288–308), is a useful tool for producing regression tables from stored estimates. However, its syntax is relatively complex and commands may turn out long even for simple tables. Furthermore, having to store the estimates beforehand can be cumbersome. To facilitate the production of regression tables, I therefore present here two new commands called eststo and esttab. eststo is a wrapper for offcial Stata’s estimates store and simplifies the storing of estimation results for tabulation. esttab, on the other hand, is a wrapper for estout and simplifies compiling nice-looking tables from the stored estimates without much typing. I also provide updates to estout and estadd.
Resumo:
Organizing and archiving statistical results and processing a subset of those results for publication are important and often underestimated issues in conducting statistical analyses. Because automation of these tasks is often poor, processing results produced by statistical packages is quite laborious and vulnerable to error. I will therefore present a new package called estout that facilitates and automates some of these tasks. This new command can be used to produce regression tables for use with spreadsheets, LaTeX, HTML, or word processors. For example, the results for multiple models can be organized in spreadsheets and can thus be archived in an orderly manner. Alternatively, the results can be directly saved as a publication-ready table for inclusion in, for example, a LaTeX document. estout is implemented as a wrapper for estimates table but has many additional features, such as support for mfx. However, despite its flexibility, estout is—I believe—still very straightforward and easy to use. Furthermore, estout can be customized via so-called defaults files. A tool to make available supplementary statistics called estadd is also provided.
Resumo:
In this paper we propose a new fully-automatic method for localizing and segmenting 3D intervertebral discs from MR images, where the two problems are solved in a unified data-driven regression and classification framework. We estimate the output (image displacements for localization, or fg/bg labels for segmentation) of image points by exploiting both training data and geometric constraints simultaneously. The problem is formulated in a unified objective function which is then solved globally and efficiently. We validate our method on MR images of 25 patients. Taking manually labeled data as the ground truth, our method achieves a mean localization error of 1.3 mm, a mean Dice metric of 87%, and a mean surface distance of 1.3 mm. Our method can be applied to other localization and segmentation tasks.