61 resultados para TK Electrical engineering. Electronics Nuclear engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a conceptual prototype model of a focal plane array unit for the STEAMR instrument, highlighting the challenges presented by the required high relative beam proximity of the instrument and focus on how edge-diffraction effects contribute to the array's performance. The analysis was carried out as a comparative process using both PO & PTD and MoM techniques. We first highlight general differences between these computational techniques, with the discussion focusing on diffractive edge effects for near-field imaging reflectors with high truncation. We then present the results of in-depth modeling analyses of the STEAMR focal plane array followed by near-field antenna measurements of a breadboard model of the array. The results of these near-field measurements agree well with both simulation techniques although MoM shows slightly higher complex beam coupling to the measurements than PO & PTD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a novel technique for the removal of astigmatism in submillimeter-wave optical systems through employment of a specific combination of so-called astigmatic off-axis reflectors. This technique treats an orthogonally astigmatic beam using skew Gaussian beam analysis, from which an anastigmatic imaging network is derived. The resultant beam is considered truly stigmatic, with all Gaussian beam parameters in the orthogonal directions being matched. This is thus considered an improvement over previous techniques wherein a beam corrected for astigmatism has only the orthogonal beam amplitude radii matched, with phase shift and phase radius of curvature not considered. This technique is computationally efficient, negating the requirement for computationally intensive numerical analysis of shaped reflector surfaces. The required optical surfaces are also relatively simple to implement compared to such numerically optimized shaped surfaces. This technique is implemented in this work as part of the complete optics train for the STEAMR antenna. The STEAMR instrument is envisaged as a mutli-beam limb sounding instrument operating at submillimeter wavelengths. The antenna optics arrangement for this instrument uses multiple off-axis reflectors to control the incident radiation and couple them to their corresponding receiver feeds. An anastigmatic imaging network is successfully implemented into an optical model of this antenna, and the resultant design ensures optimal imaging of the beams to the corresponding feed horns. This example also addresses the challenges of imaging in multi-beam antenna systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliability of millimeter and sub-millimeter wave radiometer measurements is dependent on the accuracy of the loads they employ as calibration targets. In the recent past on-board calibration loads have been developed for a variety of satellite remote sensing instruments. Unfortunately some of these have suffered from calibration inaccuracies which had poor thermal performance of the calibration target as the root cause. Stringent performance parameters of the calibration target such as low reflectivity, high temperature uniformity, low mass and low power consumption combined with low volumetric requirements remain a challenge for the space instrument developer. In this paper we present a novel multi-layer absorber concept for a calibration load which offers an excellent compromise between very good radiometric performance and temperature uniformity and the mass and volumetric constraints required by space-borne calibration targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise e.g., Fundus photography, Optical Coherence Tomography (OCT), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The presented article’s goal is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI which was not visible before like vessels and the macula. This article’s contributions include automatic detection of the optic disc, the fovea, the optic axis and an automatic segmentation of the vitreous humor of the eye.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report on an optical tolerance analysis of the submillimeter atmospheric multi-beam limb sounder, STEAMR. Physical optics and ray-tracing methods were used to quantify and separate errors in beam pointing and distortion due to reflector misalignment and primary reflector surface deformations. Simulations were performed concurrently with the manufacturing of a multi-beam demonstrator of the relay optical system which shapes and images the beams to their corresponding receiver feed horns. Results from Monte Carlo simulations show that the inserts used for reflector mounting should be positioned with an overall accuracy better than 100 μm (~ 1/10 wavelength). Analyses of primary reflector surface deformations show that a deviation of magnitude 100 μm can be tolerable before deployment, whereas the corresponding variations should be less than 30 μm during operation. The most sensitive optical elements in terms of misalignments are found near the focal plane. This localized sensitivity is attributed to the off-axis nature of the beams at this location. Post-assembly mechanical measurements of the reflectors in the demonstrator show that alignment better than 50 μm could be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cephalometric analysis is an essential clinical and research tool in orthodontics for the orthodontic analysis and treatment planning. This paper presents the evaluation of the methods submitted to the Automatic Cephalometric X-Ray Landmark Detection Challenge, held at the IEEE International Symposium on Biomedical Imaging 2014 with an on-site competition. The challenge was set to explore and compare automatic landmark detection methods in application to cephalometric X-ray images. Methods were evaluated on a common database including cephalograms of 300 patients aged six to 60 years, collected from the Dental Department, Tri-Service General Hospital, Taiwan, and manually marked anatomical landmarks as the ground truth data, generated by two experienced medical doctors. Quantitative evaluation was performed to compare the results of a representative selection of current methods submitted to the challenge. Experimental results show that three methods are able to achieve detection rates greater than 80% using the 4 mm precision range, but only one method achieves a detection rate greater than 70% using the 2 mm precision range, which is the acceptable precision range in clinical practice. The study provides insights into the performance of different landmark detection approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In retinal surgery, surgeons face difficulties such as indirect visualization of surgical targets, physiological tremor, and lack of tactile feedback, which increase the risk of retinal damage caused by incorrect surgical gestures. In this context, intraocular proximity sensing has the potential to overcome current technical limitations and increase surgical safety. In this paper, we present a system for detecting unintentional collisions between surgical tools and the retina using the visual feedback provided by the opthalmic stereo microscope. Using stereo images, proximity between surgical tools and the retinal surface can be detected when their relative stereo disparity is small. For this purpose, we developed a system comprised of two modules. The first is a module for tracking the surgical tool position on both stereo images. The second is a disparity tracking module for estimating a stereo disparity map of the retinal surface. Both modules were specially tailored for coping with the challenging visualization conditions in retinal surgery. The potential clinical value of the proposed method is demonstrated by extensive testing using a silicon phantom eye and recorded rabbit in vivo data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here we present a graphics processor unit (GPU) based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to auto-regressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and 4 times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a 7-day high-resolution ECG is computed within less than 3 seconds. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GOAL: In the following, we will present a newly developed X-ray calibration phantom and its integration for 2-D/3-D pelvis reconstruction and subsequent automatic cup planning. Two different planning strategies were applied and evaluated with clinical data. METHODS: Two different cup planning methods were investigated: The first planning strategy is based on a combined pelvis and cup statistical atlas. Thereby, the pelvis part of the combined atlas is matched to the reconstructed pelvis model, resulting in an optimized cup planning. The second planning strategy analyzes the morphology of the reconstructed pelvis model to determine the best fitting cup implant. RESULTS: The first planning strategy was compared to 3-D CT-based planning. Digitally reconstructed radiographs of THA patients with differently severe pathologies were used to evaluate the accuracy of predicting the cup size and position. Within a discrepancy of one cup size, the size was correctly identified in 100% of the cases for Crowe type I datasets and in 77.8% of the cases for Crowe type II, III, and IV datasets. The second planning strategy was analyzed with respect to the eventually implanted cup size. In seven patients, the estimated cup diameter was correct within one cup size, while the estimation for the remaining five patients differed by two cup sizes. CONCLUSION: While both planning strategies showed the same prediction rate with a discrepancy of one cup size (87.5%), the prediction of the exact cup size was increased for the statistical atlas-based strategy (56%) in contrast to the anatomically driven approach (37.5%). SIGNIFICANCE: The proposed approach demonstrated the clinical validity of using 2-D/3-D reconstruction technique for cup planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GOAL We present the development of a boneanchored port for the painless long-term hemodialytic treatment of patients with renal failure. This port is implanted behind the ear. METHODS The port was developed based on knowledge obtained from long-term experience with implantable hearing devices, which are firmly anchored to the bone behind the ear. This concept of bone anchoring was adapted to the requirements for a vascular access during hemodialysis. The investigational device is comprised of a base plate that is firmly fixed with bone screws to the bone behind the ear (temporal bone). A catheter leads from the base plate valve block through the internal jugular vein and into the right atrium. The valves are opened using a special disposable adapter, without any need to puncture the blood vessels. Between hemodialysis sessions the port is protected with a disposable cover. RESULTS Flow rate, leak tightness and purification were tested on mockups. Preoperative planning and the surgical procedure were verified in 15 anatomical human whole head specimens. CONCLUSION Preclinical evaluations demonstrated the technical feasibility and safety of the investigational device. SIGNIFICANCE Approximately 1.5 million people are treated with hemodialysis worldwide, and 25% of the overall cost of dialysis therapy results from vascular access problems. New approaches towards enhancing vascular access could potentially reduce the costs and complications of hemodialytic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asynchronous level crossing sampling analog-to-digital converters (ADCs) are known to be more energy efficient and produce fewer samples than their equidistantly sampling counterparts. However, as the required threshold voltage is lowered, the number of samples and, in turn, the data rate and the energy consumed by the overall system increases. In this paper, we present a cubic Hermitian vector-based technique for online compression of asynchronously sampled electrocardiogram signals. The proposed method is computationally efficient data compression. The algorithm has complexity O(n), thus well suited for asynchronous ADCs. Our algorithm requires no data buffering, maintaining the energy advantage of asynchronous ADCs. The proposed method of compression has a compression ratio of up to 90% with achievable percentage root-mean-square difference ratios as a low as 0.97. The algorithm preserves the superior feature-to-feature timing accuracy of asynchronously sampled signals. These advantages are achieved in a computationally efficient manner since algorithm boundary parameters for the signals are extracted a priori.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy harvesting devices are widely discussed as an alternative power source for todays active implantable medical devices. Repeated battery replacement procedures can be avoided by extending the implants life span, which is the goal of energy harvesting concepts. This reduces the risk of complications for the patient and may even reduce device size. The continuous and powerful contractions of a human heart ideally qualify as a battery substitute. In particular, devices in close proximity to the heart such as pacemakers, defibrillators or bio signal (ECG) recorders would benefit from this alternative energy source. The clockwork of an automatic wristwatch was used to transform the hearts kinetic energy into electrical energy. In order to qualify as a continuous energy supply for the consuming device, the mechanism needs to demonstrate its harvesting capability under various conditions. Several in-vivo recorded heart motions were used as input of a mathematical model to optimize the clockworks original conversion efficiency with respect to myocardial contractions. The resulting design was implemented and tested during in-vitro and in-vivo experiments, which demonstrated the superior sensitivity of the new design for all tested heart motions.