58 resultados para Strength And Endurance Training


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM Virtual patients (VPs) are a one-of-a-kind e-learning resource, fostering clinical reasoning skills through clinical case examples. The combination with face-to-face teaching is important for their successful integration, which is referred to as "blended learning". So far little is known about the use of VPs in the field of continuing medical education and residency training. The pilot study presented here inquired the application of VPs in the framework of a pediatric residency revision course. METHODS Around 200 participants of a pediatric nephology lecture ('nephrotic and nephritic syndrome in children') were offered two VPs as a wrap-up session at the revision course of the German Society for Pediatrics and Adolescent Medicine (DGKJ) 2009 in Heidelberg, Germany. Using a web-based survey form, different aspects were evaluated concerning the learning experiences with VPs, the combination with the lecture, and the use of VPs for residency training in general. RESULTS N=40 evaluable survey forms were returned (approximately 21%). The return rate was impaired by a technical problem with the local Wi-Fi firewall. The participants perceived the work-up of the VPs as a worthwhile learning experience, with proper preparation for diagnosing and treating real patients with similar complaints. Case presentations, interactivity, and locally and timely independent repetitive practices were, in particular, pointed out. On being asked about the use of VPs in general for residency training, there was a distinct demand for more such offers. CONCLUSION VPs may reasonably complement existing learning activities in residency training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE The objective of this study was to evaluate stiffness, strength, and failure modes of monolithic crowns produced using computer-aided design/computer-assisted manufacture, which are connected to diverse titanium and zirconia abutments on an implant system with tapered, internal connections. MATERIALS AND METHODS Twenty monolithic lithium disilicate (LS2) crowns were constructed and loaded on bone level-type implants in a universal testing machine under quasistatic conditions according to DIN ISO 14801. Comparative analysis included a 2 × 2 format: prefabricated titanium abutments using proprietary bonding bases (group A) vs nonproprietary bonding bases (group B), and customized zirconia abutments using proprietary Straumann CARES (group C) vs nonproprietary Astra Atlantis (group D) material. Stiffness and strength were assessed and calculated statistically with the Wilcoxon rank sum test. Cross-sections of each tested group were inspected microscopically. RESULTS Loaded LS2 crowns, implants, and abutment screws in all tested specimens (groups A, B, C, and D) did not show any visible fractures. For an analysis of titanium abutments (groups A and B), stiffness and strength showed equally high stability. In contrast, proprietary and nonproprietary customized zirconia abutments exhibited statistically significant differences with a mean strength of 366 N (Astra) and 541 N (CARES) (P < .05); as well as a mean stiffness of 884 N/mm (Astra) and 1,751 N/mm (CARES) (P < .05), respectively. Microscopic cross-sections revealed cracks in all zirconia abutments (groups C and D) below the implant shoulder. CONCLUSION Depending on the abutment design, prefabricated titanium abutment and proprietary customized zirconia implant-abutment connections in conjunction with monolithic LS2 crowns had the best results in this laboratory investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Resistance training (RT) is safe and practicable in low-risk populations with coronary artery disease. In patients with left ventricular (LV) dysfunction after an acute ischaemic event, few data exist about the impact of RT on LV remodelling. METHODS: In this prospective, randomized, controlled study, 38 patients, after a first myocardial infarction and a maximum ejection fraction (EF) of 45%, were assigned either to combined endurance training (ET)/RT (n=17; 15 men; 54.7+/-9.4 years and EF: 40.3+/-4.5%) or to ET alone (n=21; 17 men; 57.0+/-9.6 years and EF: 41.9+/-4.9%) for 12 weeks. ET was effectuated at an intensity of 70-85% of peak heart rate; RT, between 40 and 60% of the one-repetition maximum. LV remodelling was assessed by MRI. RESULTS: No statistically significant differences between the groups in the changes of end-diastolic volume (P=0.914), LV mass (P=0.885) and EF (P=0.763) were observed. Over 1 year, the end-diastolic volume increased from 206+/-41 to 210+/-48 ml (P=0.379) vs. 183+/-44 to 186+/-52 ml (P=0.586); LV mass from 149+/-28 to 155+/-31 g (P=0.408) vs. 144+/-36 to 149+/-42 g (P=0.227) and EF from 49.1+/-12.3 to 49.3+/-12.0% (P=0.959) vs. 51.5+/-13.1 to 54.1% (P=0.463), in the ET/RT and ET groups, respectively. Peak VO2 and muscle strength increased significantly in both groups, but no difference between the groups was noticed. CONCLUSION: RT with an intensity of up to 60% of the one-repetition maximum, after an acute myocardial infarction, does not lead to a more pronounced LV dilatation than ET alone. A combined ET/RT, or ET alone, for 3 months can both increase the peak VO2 and muscle strength significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates whether adaptations of mitochondrial function accompany the improvement of endurance performance capacity observed in well-trained athletes after an intermittent hypoxic training program. Fifteen endurance-trained athletes performed two weekly training sessions on treadmill at the velocity associated with the second ventilatory threshold (VT2) with inspired O2 fraction = 14.5% [hypoxic group (Hyp), n = 8] or with inspired O2 fraction = 21% [normoxic group (Nor), n = 7], integrated into their usual training, for 6 wk. Before and after training, oxygen uptake (VO2) and speed at VT2, maximal VO2 (VO2 max), and time to exhaustion at velocity of VO2 max (minimal speed associated with VO2 max) were measured, and muscle biopsies of vastus lateralis were harvested. Muscle oxidative capacities and sensitivity of mitochondrial respiration to ADP (Km) were evaluated on permeabilized muscle fibers. Time to exhaustion, VO2 at VT2, and VO2 max were significantly improved in Hyp (+42, +8, and +5%, respectively) but not in Nor. No increase in muscle oxidative capacity was obtained with either training protocol. However, mitochondrial regulation shifted to a more oxidative profile in Hyp only as shown by the increased Km for ADP (Nor: before 476 +/- 63, after 524 +/- 62 microM, not significant; Hyp: before 441 +/- 59, after 694 +/- 51 microM, P < 0.05). Thus including hypoxia sessions into the usual training of athletes qualitatively ameliorates mitochondrial function by increasing the respiratory control by creatine, providing a tighter integration between ATP demand and supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that local muscle tissue hypoxia is an important consequence and possibly a relevant adaptive signal of endurance exercise training in humans. It has been reasoned that it might be advantageous to increase this exercise stimulus by working in hypoxia. However, as long-term exposure to severe hypoxia has been shown to be detrimental to muscle tissue, experimental protocols were developed that expose subjects to hypoxia only for the duration of the exercise session and allow recovery in normoxia (live low-train high or hypoxic training). This overview reports data from 27 controlled studies using some implementation of hypoxic training paradigms. Hypoxia exposure varied between 2300 and 5700 m and training duration ranged from 10 days to 8 weeks. A similar number of studies was carried out on untrained and on trained subjects. Muscle structural, biochemical and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available data on global estimates of performance capacity such as maximal oxygen uptake (VO2max) and maximal power output (Pmax), hypoxia as a supplement to training is not consistently found to be of advantage for performance at sea level. There is some evidence mainly from studies on untrained subjects for an advantage of hypoxic training for performance at altitude. Live low-train high may be considered when altitude acclimatization is not an option.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: to determine the short- and long-term effects of resistance training on muscle strength, psychological well-being, control-beliefs, cognitive speed and memory in normally active elderly people. Methods: 46 elderly people (mean age 73.2 years; 18 women and 28 men), were randomly assigned to training and control groups (n = 23 each). Pre- and post-tests were administered 1 week before and 1 week after the 8-week training intervention. The training sessions, performed once a week, consisted of a 10 min warm-up phase and eight resistance exercises on machines. Results: there was a significant increase in maximum dynamic strength in the training group. This training effect was associated with a significant decrease in self-attentiveness, which is known to enhance psychological well-being. No significant changes could be observed in control-beliefs. Modest effects on cognitive functioning occurred with the training procedure: although there were no changes in cognitive speed, significant pre/post-changes could be shown in free recall and recognition in the experimental group. A post-test comparison between the experimental group and control group showed a weak effect for recognition but no significant differences in free recall. Significant long-term effects were found in the training group for muscular strength and memory performance (free recall) 1 year later. Conclusion: an 8-week programme of resistance training lessens anxiety and self-attentiveness and improves muscle strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS A better understanding of pelvic floor muscle (PFM) activation and strength components is a prerequisite to get better insight in PFM contraction mechanisms and develop more specific PFM-training regimens for female stress urinary incontinence (SUI) patients. The aim of this systematic review (2012:CRD42012002547) was to evaluate and summarize existing studies investigating PFM activation and strength components influencing female continence and SUI. METHODS PubMed, EMBASE, and Cochrane databases were systematically searched for literature from January 1980 to November 2013 for cross-sectional studies comparing female SUI patients with healthy controls and intervention studies with SUI patients reporting on the association between PFM activation and strength components and urine loss. Trial characteristics, evaluated PFM components, their definitions, measurement methods, study outcomes, as well as quality measures, based on the Cochrane risk of bias tool, were independently extracted. The high heterogeneity of the retrieved data made pooling of results impossible and therefore restricted the analysis to a systematic review. RESULTS Cross-sectional studies showed group differences in favor of the continent women compared to SUI patients for PFM activation or PFM maximal strength, mean strength or sustained contraction. All intervention studies showed an improvement of PFM strength and decrease in urine loss in SUI patients after physical therapy. CONCLUSIONS Higher PFM activation and strength components influence female continence positively. This systematic review underscored the need for a standardized PFM components' terminology (similar to rehabilitation and training science), standardized test procedures and well matched diagnostic instruments. Neurourol. Urodynam. © 2014 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Extensive endurance training and arterial hypertension are established risk factors for atrial fibrillation. We aimed to assess the proportion of masked hypertension in endurance athletes and the impact on cardiac remodeling, mechanics, and supraventricular tachycardias (SVT). METHODS: Male participants of a 10-mile race were recruited and included if office blood pressure was normal (<140/90 mmHg). Athletes were stratified into a masked hypertension and normotension group by ambulatory blood pressure. Primary endpoint was diastolic function, expressed as peak early diastolic mitral annulus velocity (E'). Left ventricular global strain, left ventricular mass/volume ratio, left atrial volume index, signal-averaged P-wave duration (SAPWD), and SVT during 24-h Holter monitoring were recorded. RESULTS: From 108 runners recruited, 87 were included in the final analysis. Thirty-three (38%) had masked hypertension. The mean age was 42 +/- 8 years. Groups did not differ with respect to age, body composition, cumulative training hours, and 10-mile race time. Athletes with masked hypertension had a lower E' and a higher left ventricular mass/volume ratio. Left ventricular global strain, left atrial volume index, SAPWD, and SVT showed no significant differences between the groups. In multiple linear regression analysis, masked hypertension was independently associated with E' (beta = -0.270, P = 0.004) and left ventricular mass/volume ratio (beta = 0.206, P = 0.049). Cumulative training hours was the only independent predictor for left atrial volume index (beta = 0.474, P < 0.001) and SAPWD (beta = 0.481, P < 0.001). CONCLUSION: In our study, a relevant proportion of middle-aged athletes had masked hypertension, associated with a lower diastolic function and a higher left ventricular mass/volume ratio, but unrelated to left ventricular systolic function, atrial remodeling, or SVT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic stress is believed to constitute an important signal for training-induced adjustments of gene expression and oxidative capacity in skeletal muscle. We hypothesized that the effects of endurance training on expression of muscle-relevant transcripts and ultrastructure would be specifically modified by a hypoxia complement during exercise due to enhanced glycolytic strain. Endurance training of untrained male subjects in conditions of hypoxia increased subsarcolemmal mitochondrial density in the recruited vastus lateralis muscle and power output in hypoxia more than training in normoxia, i.e. 169 versus 91% and 10 versus 6%, respectively, and tended to differentially elevate sarcoplasmic volume density (42 versus 20%, P = 0.07). The hypoxia-specific ultrastructural adjustments with training corresponded to differential regulation of the muscle transcriptome by single and repeated exercise between both oxygenation conditions. Fine-tuning by exercise in hypoxia comprised gene ontologies connected to energy provision by glycolysis and fat metabolism in mitochondria, remodelling of capillaries and the extracellular matrix, and cell cycle regulation, but not fibre structure. In the untrained state, the transcriptome response during the first 24 h of recovery from a single exercise bout correlated positively with changes in arterial oxygen saturation during exercise and negatively with blood lactate. This correspondence was inverted in the trained state. The observations highlight that the expression response of myocellular energy pathways to endurance work is graded with regard to metabolic stress and the training state. The exposed mechanistic relationship implies that the altitude specificity of improvements in aerobic performance with a 'living low-training high' regime has a myocellular basis.