35 resultados para Print on demand


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this article is to demonstrate the feasibility of on-demand creation of cloud-based elastic mobile core networks, along with their lifecycle management. For this purpose the article describes the key elements to realize the architectural vision of EPC as a Service, an implementation option of the Evolved Packet Core, as specified by 3GPP, which can be deployed in cloud environments. To meet several challenging requirements associated with the implementation of EPC over a cloud infrastructure and providing it “as a Service,” this article presents a number of different options, each with different characteristics, advantages, and disadvantages. A thorough analysis comparing the different implementation options is also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently telecommunication industry benefits from infrastructure sharing, one of the most fundamental enablers of cloud computing, leading to emergence of the Mobile Virtual Network Operator (MVNO) concept. The most momentous intents by this approach are the support of on-demand provisioning and elasticity of virtualized mobile network components, based on data traffic load. To realize it, during operation and management procedures, the virtualized services need be triggered in order to scale-up/down or scale-out/in an instance. In this paper we propose an architecture called MOBaaS (Mobility and Bandwidth Availability Prediction as a Service), comprising two algorithms in order to predict user(s) mobility and network link bandwidth availability, that can be implemented in cloud based mobile network structure and can be used as a support service by any other virtualized mobile network services. MOBaaS can provide prediction information in order to generate required triggers for on-demand deploying, provisioning, disposing of virtualized network components. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operation, as well. Through the preliminary experiments with the prototype implementation on the OpenStack platform, we evaluated and confirmed the feasibility and the effectiveness of the prediction algorithms and the proposed architecture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Location prediction has attracted a significant amount of research effort. Being able to predict users’ movement benefits a wide range of communication systems, including location-based service/applications, mobile access control, mobile QoS provision, and resource management for mobile computation and storage management. In this demo, we present MOBaaS, which is a cloudified Mobility and Bandwidth prediction services that can be instantiated, deployed, and disposed on-demand. Mobility prediction of MOBaaS provides location predictions of a single/group user equipments (UEs) in a future moment. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operations. We demonstrate an example of real-time mobility prediction service deployment running on OpenStack platform, and the potential benefits it bring to other invoking services.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Granulocytes are central players of the immune system and, once activated, a tightly controlled balance between effector functions and cell removal by apoptosis guarantees maximal host benefit with least possible collateral damage to healthy tissue. Granulocytes are end-differentiated cells that cannot be maintained in culture for prolonged times. Isolating primary granulocytes is inefficient and challenging when working with mice, and especially so for the lowly abundant eosinophil and basophils subtypes. Here we describe an in vitro protocol to massively expand mouse derived myeloid progenitors and to differentiate them ‘on demand’ and in large numbers into mature neutrophils or basophils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Deep brain stimulation (DBS) is recognized as an effective treatment for movement disorders. We recently changed our technique, limiting the number of brain penetrations to three per side. OBJECTIVES The first aim was to evaluate the electrode precision on both sides of surgery since we implemented this surgical technique. The second aim was to analyse whether or not the electrode placement was improved with microrecording and macrostimulation. METHODS We retrospectively reviewed operation protocols and MRIs of 30 patients who underwent bilateral DBS. For microrecording and macrostimulation, we used three parallel channels of the 'Ben Gun' centred on the MRI-planned target. Pre- and post-operative MRIs were merged. The distance between the planned target and the centre of the implanted electrode artefact was measured. RESULTS There was no significant difference in targeting precision on both sides of surgery. There was more intra-operative adjustment of the second electrode positioning based on microrecording and macrostimulation, which allowed to significantly approach the MRI-planned target on the medial-lateral axis. CONCLUSION There was more electrode adjustment needed on the second side, possibly in relation with brain shift. We thus suggest performing a single central track with electrophysiological and clinical assessment, with multidirectional exploration on demand for suboptimal clinical responses.