45 resultados para Present and future effects
Resumo:
Current guidelines recommend transarterial chemoembolization (TACE) as the standard treatment of Barcelona-Clinic Liver Cancer (BCLC)-B patients. However, the long-term survival outcomes of patients managed with this technique do not appear fully satisfactory; in addition, intermediate-stage hepatocellular carcinoma (HCC) includes a heterogeneous population of patients with varying tumour burdens, liver function and disease aetiology. Therefore, not all patients with intermediate-stage HCC may derive similar benefit from TACE, and some patients may benefit from other treatment options, which are currently approved or being explored. These include different TACE modalities, such as selective TACE or drug-eluting beads TACE and radioembolization. The introduction of sorafenib in the therapeutic armamentarium for HCC has provided a new therapeutic option for the treatment of BCLC-B patients who are unsuitable to TACE or in whom TACE resulted in unacceptable toxicity. In addition, clinical trials aimed at investigating the potential role of this molecule in the treatment of patients with intermediate-stage HCC within combination therapeutic regimens are ongoing. This narrative review will present and discuss the most recent evidence on the locoregional or medical treatment with sorafenib in patients with intermediate-stage HCC.
Resumo:
Background: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal loss. The etiology of MS is unknown; however, environmental and genetic factors play a key role in the development of MS. Diagnostic criteria have been adapted to facilitate earlier diagnosis with increased sensitivity and specificity. Our understanding of the pathophysiology of MS has deepened considerably in recent years, resulting in different therapies to modify the disease course. Furthermore, several drugs have lately shown efficacy in phase III studies and their approval is expected in the near future. As treatment options expand, a future challenge will be to find the optimal treatment for the individual patient. Summary: This mini-review gives an overview of the current knowledge of MS with emphasis on the latest diagnostic criteria and both current and upcoming treatment options. Key Messages: Treatment of MS changes rapidly as the knowledge and therapeutic options in MS expand. Clinical Impact: Diagnosis of MS is based on McDonald criteria. MS therapy can be divided into relapse, disease-modifying and symptomatic treatment. Relapses are commonly treated with intravenous methylprednisolone. First-line therapy consists of either interferon-β, glatiramer acetate or teriflunomide. In general, agents used as escalation therapies (natalizumab, fingolimod and mitoxantrone) are more potent than the agents used for first-line therapy; however, these have potentially serious side effects and should be used with care.
Resumo:
Compared to μ→eγ and μ→eee, the process μ→e conversion in nuclei receives enhanced contributions from Higgs-induced lepton flavor violation. Upcoming μ→e conversion experiments with drastically increased sensitivity will be able to put extremely stringent bounds on Higgs-mediated μ→e transitions. We point out that the theoretical uncertainties associated with these Higgs effects, encoded in the couplings of quark scalar operators to the nucleon, can be accurately assessed using our recently developed approach based on SU(2) chiral perturbation theory that cleanly separates two- and three-flavor observables. We emphasize that with input from lattice QCD for the coupling to strangeness fNs, hadronic uncertainties are appreciably reduced compared to the traditional approach where fNs is determined from the pion-nucleon σ term by means of an SU(3) relation. We illustrate this point by considering Higgs-mediated lepton flavor violation in the standard model supplemented with higher-dimensional operators, the two-Higgs-doublet model with generic Yukawa couplings, and the minimal supersymmetric standard model. Furthermore, we compare bounds from present and future μ→e conversion and μ→eγ experiments.
Resumo:
The aim of the present study was to investigate the effects of an acute physical activity intervention that included cognitive engagement on executive functions and on cortisol level in young elementary school children. Half of the 104 participating children (6–8 years old) attended a 20-min sport sequence, which included cognitively engaging and playful forms of physical activity. The other half was assigned to a resting control condition. Individual differences in children's updating, inhibition, and shifting performance as well as salivary cortisol were assessed before (pre-test), immediately after (post-test), and 40 min after (follow-up) the intervention or control condition, respectively. Results revealed a significantly stronger improvement in inhibition in the experimental group compared to the control group, while it appeared that acute physical activity had no specific effect on updating and shifting. The intervention effect on inhibition leveled out 40 min after physical activity. Salivary cortisol increased significantly more in the experimental compared to the control group between post-test and follow-up and results support partly the assumed inverted U-shaped relationship between cortisol level and cognitive performance. In conclusion, results indicate that acute physical activity that includes cognitive engagement may have immediate positive effects on inhibition, but not necessarily on updating and shifting in elementary school children. This positive effect may partly be explained through cortisol elevation after acute physical activity.
Resumo:
Proactive career behaviors become increasingly important in today's career environment, but little is known about how and when motivational patterns affect individual differences. In a six-month longitudinal study among German university students (Study 1; N = 289) it was demonstrated that motivation in terms of “can do” (self-efficacy and context beliefs), “reason to” (autonomous career goals), and “energized to” (positive affect) significantly predicted career behaviors. Contrary to expectation, negative context beliefs had a positive effect when combined with other motivational states. Study 2 replicated and extended those results by investigating whether “can do” motivation mediates the effect of proactive personality and whether those effects are conditional upon the degree of career choice decidedness. We tested a moderated multiple mediation model with a unique sample of 134 German students, assessed three times, each interval being 6 weeks apart. The results showed that effects of proactivity were partially carried through higher self-efficacy beliefs but not context beliefs. Supporting a moderation model, indirect effects through self-efficacy beliefs were not present for students with very low decidedness.
Resumo:
Environmental aspects are increasingly being integrated in Negev Bedouin studies by both, NGO activists and scholars. We will present these recent works and discuss new concepts and methodologies of environmental studies with potential relevance in the field of Negev Bedouin studies. We will then identify research areas where environmental and development approaches converge or diverge with mainstream social sciences on this specific field of research. While most of the Bedouin population in southern Israel lives in urban centers in the Northern Negev, a large part of Bedouin people live in unrecognized clusters of houses in remote areas. Extensive livestock rearing is an important source of livelihood at least for non-urbanized Bedouin, the latter forming the lowest economic strata of the Israeli spectrum of incomes. Numerous stressors affect this Bedouin community enduring uncertain livelihood and access to land. The erratic precipitations from year to year and long-term changes in precipitation trends are a source of great uncertainty. With a significant price increase for feeding supplements to compensate for dry years, livestock rearing has become a harsher source of livelihood. Land scarcity for grazing adds to the difficulty in ensuring enough income for living. Studies in the last 15 years have described several livelihood strategies based on a livestock rearing semi-nomadic economy in the Negev. A number of other analyses have shown how Bedouin herders and governmental agencies have found agreements at the advantage of both, the agencies and the herders. New concepts such as transformability, resilience and adaptation strategies are important tools to analyze the capacity of vulnerable communities to cope with an ever increasing livelihood uncertainty. Such research concepts can assist in better understanding how Bedouin herders in the Negev may adapt to climate and political risks.
Resumo:
Introduction The global prevalence of pathologic myopia is 0.9-3.1%, and visual impairment is found in 0.1-0.5% of European and 0.2-1.4% of Asian studies. Myopic choroidal neovascularization (mCNV) affects 5.2-11.3% of pathologic myopia patients and is a leading cause of vision impairment in the working-age population. Characteristic morphological changes and visual-acuity decrease are diagnostic features. Vascular-Endothelial-Growth-Factor (VEGF) has been identified as a trigger for pathologic neovascularization in these highly myopic patients. Areas Covered We cover the epidemiology, pathology and diagnostic aspects of mCNV. The history of therapeutic interventions is described, followed by an overview of current standard-of-care (SOC)-blocking VEGF using bevacizumab (off-label), ranibizumab or aflibercept and improving vision up to 13.5-14.4 letters. Despite good efficacy, an unmet medical need remains. We summarize ongoing and future developments of new drugs to treat or potentially cure mCNV. Expert Opinion mCNV is a major global health concern. Early detection and treatment is key for a satisfying outcome. The current SOC, VEGF inhibitors, affords good therapeutic efficacy and reasonable disease stabilization with few intravitreal treatments per year. However, the long-term prognosis is still unsatisfactory, and side-effects like chorioretinal atrophy development are of concern. Therefore, efforts should be intensified to develop more effective therapies.
Resumo:
It is well known that gases adsorb on many surfaces, in particular metal surfaces. There are two main forms responsible for these effects (i) physisorption and (ii) chemisorption. Physisorption is associated with lower binding energies in the order of 1–10 kJ mol−¹, compared to chemisorption which ranges from 100 to 1000 kJ mol−¹. Furthermore, chemisorption only forms monolayers, contrasting physisorption that can form multilayer adsorption. The reverse process is called desorption and follows similar mathematical laws; however, it can be influenced by hysteresis effects. In the present experiment, we investigated the adsorption/desorption phenomena on three steel and three aluminium cylinders containing compressed air in our laboratory and under controlled conditions in a climate chamber, respectively. Our observations from completely decanting one steel and two aluminium cylinders are in agreement with the pressure dependence of physisorption for CO₂, CH₄, and H₂O. The CO₂ results for both cylinder types are in excellent agreement with the pressure dependence of a monolayer adsorption model. However, mole fraction changes due to adsorption on aluminium (< 0.05 and 0 ppm for CO₂ and H₂O) were significantly lower than on steel (< 0.41 ppm and about < 2.5 ppm, respectively). The CO₂ amount adsorbed (5.8 × 1019 CO₂ molecules) corresponds to about the fivefold monolayer adsorption, indicating that the effective surface exposed for adsorption is significantly larger than the geometric surface area. Adsorption/desorption effects were minimal for CH₄ and for CO but require further attention since they were only studied on one aluminium cylinder with a very low mole fraction. In the climate chamber, the cylinders were exposed to temperatures between −10 and +50 °C to determine the corresponding temperature coefficients of adsorption. Again, we found distinctly different values for CO₂, ranging from 0.0014 to 0.0184 ppm °C−¹ for steel cylinders and −0.0002 to −0.0003 ppm °C−¹ for aluminium cylinders. The reversed temperature dependence for aluminium cylinders points to significantly lower desorption energies than for steel cylinders and due to the small values, they might at least partly be influenced by temperature, permeation from/to sealing materials, and gas-consumption-induced pressure changes. Temperature coefficients for CH₄, CO, and H₂O adsorption were, within their error bands, insignificant. These results do indicate the need for careful selection and usage of gas cylinders for high-precision calibration purposes such as requested in trace gas applications.
Resumo:
Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer-than-present conditions in Europe and might be a native substitute for widespread drought-sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX-Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX-Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st-century multimodel ensemble results for the high-emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north-western and southern Europe. Mid-Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling–Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north-east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer-than-present conditions in central Europe.
Resumo:
Introduced about two decades ago, computer-assisted orthopedic surgery (CAOS) has emerged as a new and independent area, due to the importance of treatment of musculoskeletal diseases in orthopedics and traumatology, increasing availability of different imaging modalities, and advances in analytics and navigation tools. The aim of this paper is to present the basic elements of CAOS devices and to review state-of-the-art examples of different imaging modalities used to create the virtual representations, of different position tracking devices for navigation systems, of different surgical robots, of different methods for registration and referencing, and of CAOS modules that have been realized for different surgical procedures. Future perspectives will also be outlined.
Resumo:
Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO₂ remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO₂ fertilization, land use, wild fire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO₂ dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO₂ and δ¹³ CO₂ changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO₂ dynamics from 8ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO₂ changes after 122 ka BP. This failure to simulate late-Eemian CO₂ dynamics could be a result of the imposed forcings such as prescribed CaCO₃ accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO₂ dynamics eshallow water CaCO₃ accumulation, peat and permafrost carbon dynamics are not well represented in the current ESMs. Global-scale modeling of these long-term carbon cycle components started only in the last decade, and uncertainty in parameterization of these mechanisms is a main limitation in the successful modeling of interglacial CO₂ dynamics.
Resumo:
mTOR (mechanistic target of rapamycin) functions as the central regulator for cell proliferation, growth and survival. Up-regulation of proteins regulating mTOR, as well as its downstream targets, has been reported in various cancers. This has promoted the development of anti-cancer therapies targeting mTOR, namely fungal macrolide rapamycin, a naturally occurring mTOR inhibitor, and its analogues (rapalogues). One such rapalogue, everolimus, has been approved in the clinical treatment of renal and breast cancers. Although results have demonstrated that these mTOR inhibitors are effective in attenuating cell growth of cancer cells under in vitro and in vivo conditions, subsequent sporadic response to rapalogues therapy in clinical trials has promoted researchers to look further into the complex understanding of the dynamics of mTOR regulation in the tumour environment. Limitations of these rapalogues include the sensitivity of tumour subsets to mTOR inhibition. Additionally, it is well known that rapamycin and its rapalogues mediate their effects by inhibiting mTORC (mTOR complex) 1, with limited or no effect on mTORC2 activity. The present review summarizes the pre-clinical, clinical and recent discoveries, with emphasis on the cellular and molecular effects of everolimus in cancer therapy.
Resumo:
The present synopsis aims to integrate one study about memory training in very preterm-born children and two studies about cognition in patients with carotid artery stenosis before and after treatments. Preterm-born children are at increased risk of cognitive deficits and behavioural problems compared with peers born at term. This thesis determined whether memory training would improve cognitive functions in school-age very preterm-born children. Memory strategy training produced significant improvements in trained and non-trained cognitive functions; a core working memory training revealed significant effects on short-term memory and working memory tasks. Six months after training, children in both training groups showed better working memory performance than children in the waiting control group. This is evidence that memory training – an external influence on cognition – induces plastic changes in very preterm-born children. Patients with carotid artery stenosis are known to be at increased risk of cognitive impairment. We showed that patients with symptomatic or asymptomatic carotid artery stenosis were at higher risk for cognitive deficits than expected in a normative sample. This thesis seeks to link cognitive plasticity to internal factors like carotid stenosis. An external factor, which influences blood flow to the brain is the nature of the carotid artery stenosis treatment. Research on the effects of carotid artery stenosis treatment on cognition has produced inconsistent results. We found significant improvement in frontal lobe functions, visual memory and motor speed one year after treatment independent of the treatment type (best medical treatment, carotid artery stenting, carotid artery endarterectomy); providing evidence for ‘treatment-induced’ cognitive plasticity. Baseline performance was negatively associated with improvement in various cognitive functions after training in very preterm-born children and after treatment in patients with carotid artery stenosis. The present synopsis aims to integrate these findings into the current and relevant literature, and discuss consequences as well as methodological considerations resulting from the studies constituting the thesis at hand.
Resumo:
PURPOSE OF REVIEW This article summarizes current understanding of the arrhythmia substrate and effect of catheter ablation for infarct-related ventricular tachycardia, focusing on recent findings. RECENT FINDINGS Clinical studies support the use of catheter ablation earlier in the course of ischemic disease with moderate success in reducing arrhythmia recurrence and shocks from implantable defibrillators, although mortality remains unchanged. Ablation can be lifesaving for patients presenting with electrical storm. Advanced mapping systems with image integration facilitate identification of potential substrate, and several different approaches to manage hemodynamically unstable ventricular tachycardia have emerged. Novel ablation techniques that allow deeper lesion formation are in development. SUMMARY Catheter ablation is an important therapeutic option for preventing or reducing episodes of ventricular tachycardia in patients with ischemic cardiomyopathy. Present technologies allow successful ablation in the majority of patients, even when the arrhythmia is hemodynamically unstable. Failure of the procedure is often because of anatomic challenges that will hopefully be addressed with technological progress.
Resumo:
The Balkan Vegetation Database (BVD; GIVD ID: EU-00-019; http://www.givd.info/ID/EU-00- 019) is a regional database that consists of phytosociological relevés from different vegetation types from six countries on the Balkan Peninsula (Albania, Bosnia and Herzegovina, Bulgaria, Kosovo, Montenegro and Serbia). Currently, it contains 9,580 relevés, and most of them (78%) are geo-referenced. The database includes digitized relevés from the literature (79%) and unpublished data (21%). Herein we present descriptive statistics about attributive relevé information. We developed rules that regulate governance of the database, data provision, types of data availability regimes, data requests and terms of use, authorships and relationships with other databases. The database offers an extensive overview about studies on the local, regional and SE European levels including information about flora, vegetation and habitats.