40 resultados para Plastic tunnel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The Coherex-EU Study evaluated the safety and efficacy of PFO closure utilizing novel in-tunnel PFO closure devices. BACKGROUND Transcatheter closure of patent foramen ovale (PFO) followed the development of transcatheter closure devices designed to patch atrial septal defects (ASDs). The Coherex FlatStent™ and FlatStent™ EF devices were designed specifically to treat PFO anatomy. METHODS A total of 95 patients with a clinical indication for PFO closure were enrolled in a prospective, multicenter first in man study at six clinical sites. Thirty-six patients received the first-generation FlatStent study device, and 57 patients received the second-generation FlatStent EF study device, which was modified based on clinical experience during the first 38 cases. Two patients enrolled to receive the first generation did not receive a device. RESULTS At 6 months post-procedure, 45% (17/38) of the intention-to-treat (ITT) cohort receiving the first-generation FlatStent device had complete closure, 26% (10/38) had a trivial residual shunt, and 29% (11/38) had a moderate to large residual shunt. In the ITT cohort receiving the second-generation FlatStent EF device, 76% (43/57) had complete closure, 12% (7/57) had a trivial shunt, and 12% had a moderate to large shunt. Five major adverse events occurred, all without sequelae. CONCLUSION This initial study of the Coherex FlatStent/FlatStent EF PFO Closure System demonstrated the potential for in-tunnel PFO closure. The in-tunnel Coherex FlatStent EF may offer an alternative to septal repair devices for PFO closure in appropriately selected patients; however, further investigation will be necessary to establish the best use of this device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulation experiments give insight into the evolving energy partitioning during high-strain torsion experiments of calcite. Our numerical experiments are designed to derive a generic macroscopic grain size sensitive flow law capable of describing the full evolution from the transient regime to steady state. The transient regime is crucial for understanding the importance of micro structural processes that may lead to strain localization phenomena in deforming materials. This is particularly important in geological and geodynamic applications where the phenomenon of strain localization happens outside the time frame that can be observed under controlled laboratory conditions. Ourmethod is based on an extension of the paleowattmeter approach to the transient regime. We add an empirical hardening law using the Ramberg-Osgood approximation and assess the experiments by an evolution test function of stored over dissipated energy (lambda factor). Parameter studies of, strain hardening, dislocation creep parameter, strain rates, temperature, and lambda factor as well asmesh sensitivity are presented to explore the sensitivity of the newly derived transient/steady state flow law. Our analysis can be seen as one of the first steps in a hybrid computational-laboratory-field modeling workflow. The analysis could be improved through independent verifications by thermographic analysis in physical laboratory experiments to independently assess lambda factor evolution under laboratory conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Establishing precise age-depth relationships of high-alpine ice cores is essential in order to deduce conclusive paleoclimatic information from these archives. Radiocarbon dating of carbonaceous aerosol particles incorporated in such glaciers is a promising tool to gain absolute ages, especially from the deepest parts where conventional methods are commonly inapplicable. In this study, we present a new validation for a published C-14 dating method for ice cores. Previously C-14-dated horizons of organic material from the Juvfonne ice patch in central southern Norway (61.676 degrees N, 8.354 degrees E) were used as reference dates for adjacent ice layers, which were C-14 dated based on their particulate organic carbon (POC) fraction. Multiple measurements were carried out on 3 sampling locations within the ice patch featuring modern to multimillennial ice. The ages obtained from the analyzed samples were in agreement with the given age estimates. In addition to previous validation work, this independent verification gives further confidence that the investigated method provides the actual age of the ice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To clinically evaluate the healing of mandibular Miller Class I and II isolated gingival recessions treated with the modified coronally advanced tunnel (MCAT) in conjunction with an enamel matrix derivative (EMD) and subepithelial connective tissue graft (SCTG). METHOD AND MATERIALS Sixteen healthy patients (13 women and 3 men) exhibiting one isolated mandibular Miller Class I and II gingival recessions of a depth of ≥ 3 mm, were consecutively treated with the MCAT in conjunction with EMD and SCTG. Treatment outcomes were assessed at baseline and at 12 months postoperatively. The primary outcome variable was complete root coverage (CRC) (eg, 100% root coverage). RESULTS Postoperative pain and discomfort were low and no complications such as postoperative bleeding, allergic reactions, abscesses, or loss of SCTG were observed. At 12 months, statistically significant (P < .0001) root coverage was obtained in all 16 defects. CRC was measured in 12 out of the 16 cases (75%) while in the remaining 4 defects root coverage amounted to 90% (in two cases) and 80% (in two cases), respectively. Mean root coverage was 96.25%. Mean keratinized tissue width increased from 1.98 ± 0.8 mm at baseline to 2.5 ± 0.9 mm (P < .0001) at 12 months, while mean probing depth did not show any statistically significant changes (ie, 1.9 ± 0.3 mm at baseline vs 1.8 ± 0.2 mm at 12 months). CONCLUSION Within their limits, the present results indicate that the described treatment approach may lead to predictable root coverage of isolated mandibular Miller Class I and II gingival recessions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The Endoscopic Release of Carpal Tunnel Syndrome (ECTR) is a minimal invasive approach for the treatment of Carpal Tunnel Syndrome. There is scepticism regarding the safety of this technique, based on the assumption that this is a rather "blind" procedure and on the high number of severe complications that have been reported in the literature. PURPOSE To evaluate whether there is evidence supporting a higher risk after ECTR in comparison to the conventional open release. METHODS We searched MEDLINE (January 1966 to November 2013), EMBASE (January 1980 to November 2013), the Cochrane Neuromuscular Disease Group Specialized Register (November 2013) and CENTRAL (2013, issue 11 in The Cochrane Library). We hand-searched reference lists of included studies. We included all randomized or quasi-randomized controlled trials (e.g. study using alternation, date of birth, or case record number) that compare any ECTR with any OCTR technique. Safety was assessed by the incidence of major, minor and total number of complications, recurrences, and re-operations.The total time needed before return to work or to return to daily activities was also assessed. We synthesized data using a random-effects meta-analysis in STATA. We conducted a sensitivity analysis for rare events using binomial likelihood. We judged the conclusiveness of meta-analysis calculating the conditional power of meta-analysis. CONCLUSIONS ECTR is associated with less time off work or with daily activities. The assessment of major complications, reoperations and recurrence of symptoms does not favor either of the interventions. There is an uncertain advantage of ECTR with respect to total minor complications (more transient paresthesia but fewer skin-related complications). Future studies are unlikely to alter these findings because of the rarity of the outcome. The effect of a learning curve might be responsible for reduced recurrences and reoperations with ECTR in studies that are more recent, although formal statistical analysis failed to provide evidence for such an association. LEVEL OF EVIDENCE I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article proposes a combined technique including bone grafting, connective tissue graft, and coronally advanced flap to create some space for simultaneous bone regrowth and root coverage. A 23 year-old female was referred to our private clinic with a severe class II Miller recession and lack of attached gingiva. The suggested treatment plan comprised of root coverage combined with xenograft bone particles. The grafted area healed well and full coverage was achieved at 12-month follow-up visit. Bone-added periodontal plastic surgery can be considered as a practical procedure for management of deep gingival recession without buccal bone plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lack of archives has impeded reconstructions of moisture pathways for past glaciations in the European Alps. Here, we focus on the confluence area of two palaeoglaciers in the Swiss Plateau that were sourced on the northern (Aare glacier) and southern sides (Valais glacier) of the European Alps. We mapped tunnel valleys in the region using a drilling database, based on which we inferred the relative extent of each glacier c. 270 ka ago when the valleys were formed. We then compared this situation with that of the LGM. We found that, while the Valais glacier expanded farther into the foreland than the Aare glacier during the LGM, the opposite was the case c. 270 ka ago. We also found that LGM glaciers were non-erosive in the distal foreland. These contrasts in extents and erosional efficiencies imply differences in moisture pathways between the LGM and the time when the tunnel valleys were formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.