36 resultados para Parallel programming (computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object inspectors are an essential category of tools that allow developers to comprehend the run-time of object-oriented systems. Traditional object inspectors favor a generic view that focuses on the low-level details of the state of single objects. Based on 16 interviews with software developers and a follow-up survey with 62 respondents we identified a need for object inspectors that support different high-level ways to visualize and explore objects, depending on both the object and the current developer need. We propose the Moldable Inspector, a novel inspector model that enables developers to adapt the inspection workflow to suit their immediate needs by making the inspection context explicit, providing multiple interchangeable domain-specific views for each object, and supporting a workflow that groups together multiple levels of connected objects. We show that the Moldable Inspector can address multiple kinds of development needs involving a wide range of objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the run-time behaviour of object-oriented applications entails the comprehension of run-time objects. Traditional object inspectors favor generic views that focus on the low-level details of the state of single objects. While universally applicable, this generic approach does not take into account the varying needs of developers that could benefit from tailored views and exploration possibilities. GTInspector is a novel moldable object inspector that provides different high-level ways to visualize and explore objects, adapted to both the object and the current developer need.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developers commonly ask detailed and domain-specific questions about the software systems they are developing and maintaining. Integrated development environments (IDEs) form an essential category of tools for developing software that should support software engineering decision making. Unfortunately, rigid and generic IDEs that focus on low-level programming tasks, that promote code rather than data, and that suppress customization, offer limited support for informed decision making during software development. We propose to improve decision making within IDEs by moving from generic to context-aware IDEs through moldable tools. In this paper, we promote the idea of moldable tools, illustrate it with concrete examples, and discuss future research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subtype polymorphism is a cornerstone of object-oriented programming. By hiding variability in behavior behind a uniform interface, polymorphism decouples clients from providers and thus enables genericity, modularity and extensi- bility. At the same time, however, it scatters the implementation of the behavior over multiple classes thus potentially hampering program comprehension. The extent to which polymorphism is used in real programs and the impact of polymorphism on program comprehension are not very well understood. We report on a preliminary study of the prevalence of polymorphism in several hundred open source software systems written in Smalltalk, one of the oldest object-oriented programming languages, and in Java, one of the most widespread ones. Although a large portion of the call sites in these systems are polymorphic, a majority have a small number of potential candidates. Smalltalk uses polymorphism to a much greater extent than Java. We discuss how these findings can be used as input for more detailed studies in program comprehension and for better developer support in the IDE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial differential equation (PDE) solvers are commonly employed to study and characterize the parameter space for reaction-diffusion (RD) systems while investigating biological pattern formation. Increasingly, biologists wish to perform such studies with arbitrary surfaces representing â˜realâ 3D geometries for better insights. In this paper, we present a highly optimized CUDA-based solver for RD equations on triangulated meshes in 3D. We demonstrate our solver using a chemotactic model that can be used to study snakeskin pigmentation, for example. We employ a finite element based approach to perform explicit Euler time integrations. We compare our approach to a naive GPU implementation and provide an in-depth performance analysis, demonstrating the significant speedup afforded by our optimizations. The optimization strategies that we exploit could be generalized to other mesh based processing applications with PDE simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Program comprehension requires developers to reason about many kinds of highly interconnected software entities. Dealing with this reality prompts developers to continuously intertwine searching and navigation. Nevertheless, most integrated development environments (IDEs) address searching by means of many disconnected search tools, making it difficult for developers to reuse search results produced by one search tool as input for another search tool. This forces developers to spend considerable time manually linking disconnected search results. To address this issue we propose Spotter, a model for expressing and combining search tools in a unified way. The current implementation shows that Spotter can unify a wide range of search tools. More information about Spotter can be found at scg.unibe.ch/research/moldablespotter